Title

應用化學摻料於水泥研磨製程之助磨成效研究

Translated Titles

The research regarding efficiency of grinding process of cement with applie chemical admixture

Authors

陳奇鴻

Key Words

比表面積 ; 助磨劑 ; 化學摻料 ; 水泥 ; 研磨 ; grinding aids ; cement ; grinding ; specific surface area ; chemical admixtures

PublicationName

中央大學土木工程學系學位論文

Volume or Term/Year and Month of Publication

2006年

Academic Degree Category

碩士

Advisor

李釗

Content Language

繁體中文

Chinese Abstract

生料配料與研磨、熟料燒成、水泥研磨等為水泥的三大製程,其中水泥研磨的重點在於提昇水泥成品的性質及降低電耗。為使熟料更具易磨性,一般會在水泥研磨製程中添加助磨劑。由於水泥生產設備已漸為大型化,若助磨劑使用不當,對以強度為重要評估指標的水泥產品將會影響既深且遠。 在研磨過程中加入助磨劑,除可阻止熟料受機械作用而形成的微裂縫癒合以避免做虛功外,並可與水泥熟料粒子的表面電荷產生中和作用以避免結團。由於各種化學摻料的成份均不相同,為瞭解其是否達到「助磨」成效,本研究以實驗室用球磨機進行試驗,並測定水泥粉體之比表面積、留篩率、流動性等性質,作為助磨劑效益的判定。 試驗結果顯示,當F型強塑劑與G型添加量為0.055 %,流動化劑與四號助磨劑為0.015 %時,能夠有效提昇比表面積,且減少研磨時間約11 ~ 13 %。在雷射粒徑分析結果部份,亦能增加成品中30 ~ 40 μm顆粒的含量,進而提高新拌水泥漿體的流動性以及硬固漿體的抗壓強度。因此在適量添加化學掺料下,能夠增進水泥成品的性質。

English Abstract

The mixing and grinding of raw materials, the burning of clinkers and the grinding of cement are the three manufacturing procedures of cement, in which the last one is to enhance the characters of cement and save electricity. Due to the more and more large-scaled manufacturing facilities, the improper use of grinding aids can prominently affect the strength, as the significant indicator of cement products. Mixing grinding aids during grinding can not only prevent the close up of microcracks that are resulted from the manufacturing procedure of clinkers in machines, but also neutralize the surface electrical charge of clinker particles of cement without clustering. In order to understand the grinding effectiveness of the different elements of each chemical admixture, the study adopts a ball mill, measuring the specific surface area, amount retained ratios and flowability of cement powder to assess the effectiveness of the grinding aids. According to the experiment, the increase of F and G superplasticizers to 0.055 % and that of fluid medicaments and grinding aids No. 4 to 0.015 % can raise the specific surface area effectively and reduce the grinding time to around 11 ~ 13 %. As for the laser grain size analysis, the grains of end products are increased to 30 ~ 40 μm as well. The result enhances the fluidity of the new cement paste and the compressive strength of the hardened paste; mixing the proper amount of chemical admixtures, therefore, can enrich the characters of cement products.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
Reference
  1. Austin, L.G. (1982). “Further Studies of ball and powder filling effects in ball milling.” Powder Technology, 31, 121-126.
    連結:
  2. Fuerstenau, D. W. (1995). “Grinding aids.” Kona, 13, 5-18.
    連結:
  3. Nitta, S., Bissombolo, A., Furuyama, T. and Mori, S. (2002). “Relationship between Bond''s work index (Wi) and uniformity constant (n) of grinding kinetics on Tower mill milling limestone.” Int. J. Miner. Process, 66, 79– 87.
    連結:
  4. Odigure, J. O. (1999). “Grindability of cement clinker from raw mix containing metallic particles.” Cement and Concrete Research, 29, 303–307.
    連結:
  5. Odler, I. and Zhang, H. (1996). “ Investigations on high SO3 Portland clinkers and cements clinker synthesis and cement preparation.” Cement and Concrete Research, 26(9), 1307-1313.
    連結:
  6. Oettel, W. and Husemann, K. (2004) . “The effect of a grinding aid on comminution of fine limestone particle beds with single compressive load.” Int. J. Miner. Process., 74, 239-248.
    連結:
  7. Opockzy L. (1986). “Grinding technology for producing high strength cement of high slag content.” Powder Technology, 48, 91-98
    連結:
  8. Opoczky, L. and Gavel, V. (2004). “Effect of certain trace elements on the grindability of cement clinkers in the connection with the use of wastes.” Int. J. Miner. Process, 74, 129–136.
    連結:
  9. Paramasivam, R. and Vedaraman , R. (1992). “Effects of the physical properties of liquid additives on dry grinding.” Powder Technology, 70, 43-50.
    連結:
  10. Paramasivam, R. and Vedaraman , R. (1993). “Effect of fatty acid additives on the material flow properties of dry grinding.” Powder Technology, 77, 69-78.
    連結:
  11. Rajendran, P. B. and Paramasivam, R. (1999). “Effect of grinding aids on the time-flow characteristics of the ground product from a batch ball mill.” Powder Technology, 101, 31-42.
    連結:
  12. Santomaso, P. and Canu, L. P. (2003). “ Powder fowability and density ratios: the impact of granules packing.” Chemical Engineering Science, 58, 2857 – 2874.
    連結:
  13. Thalberg, K., Lindholm, D. and Axelsson, A. (2004). “ Comparison of different flowability tests for powders for inhalation.” Powder Technology, 146, 206–213.
    連結:
  14. Vu, T.O., Galet, L., Fages, J. and Oulahna, D. (2003). “ Improving the dispersion kinetics of a cocoa powder by size enlargement.” Powder Technology, 130, 400– 406.
    連結:
  15. Wong, C.Y. (2000). “Characterisation of the fowability of glass beads by bulk densities ratio.” Chemical Engineering Science, 55, 3855-3859.
    連結:
  16. Bond, F.C. (1952). “The Third Theory of Comminution.” Meeting of AIME, Mexico City, 484-494.
  17. Carr, R. L. (1965). “Evaluating flow properties of solid”, Chemical Engineering, 18, 163-165.
  18. Duda, W. H.,最新水泥製造學,中外圖書出版社,臺北市(1977)。
  19. Kick, F. (1885). “Das Gesetz der proporionalem Widerstand und Siene Anwendung.” Liepzig.
  20. Ocepek, D. (1975). “Rebinder Effect.” Rud.-Metal. Zb, 1, 53-70.
  21. Rittinger, P. R. (1867). “Lehrbauch der Aufbereitungskunde.” Berlin.
  22. Somasundaran, P. and Moudgil, B. M. (1998). “Reagents in Mineral Technology.” Marcel Dekker Inc.
  23. Young, J. F., Mindess, S. and Darwin, D.(2003). “Concrete.” Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
  24. 三輪茂雄、日高重助,粉體工學,復漢出版社,臺北市(1994)。
  25. 王君達、陸厚根、田秋玉,「高爐礦渣助磨機理研究」,同濟大學學報, 第二十四卷,第六期,第660-664頁 (1996)。
  26. 肖紅君、楊海濤,「助磨劑對絹雲母超細粉碎的影響」,非金屬礦專輯,第二十四卷,第7-8頁 (2001)
  27. 宋曉輝、石廣福、韓書超,「磨製鋁粉所用添加劑的研究」,輕合金加工技術專輯,第三十卷,第五期,第41-42頁 (2002) 。
  28. 呂維明、戴怡德,粉粒體粒徑量測技術,高立圖書有限公司,臺北市(1998)。
  29. 溫紹炳、徐錦上、林煜堂,「粉碎節能的標準試驗-邦德標準研磨試驗」,化工技術,第二卷,第一期,第61-70頁 (1994)。
  30. 鄭水林,超細粉碎,中國建材工業出版社(1999)。
  31. 錢效林,「研磨介質和助磨劑對超細粉碎的影響」,中國陶瓷月刊,第十三卷,第四期,第16-18頁 (2003)。
  32. 企業,粉體物性測定裝置說明書,粉體技術資料(2005)。