Translated Titles

Numerical Simulations for a 3D System Composed of Polyhedral Blocks-Dissection of Polyhedral Blocks



Key Words

四面體 ; 三角化 ; 拓樸學 ; 多面體 ; triangulation ; tetrahedron ; topology ; polyhedron



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

多面塊體之數值模擬過程中,除了已知的多面塊體外觀形體(頂點、稜邊、面及座標)輸入值,剩下的體積、慣性積、慣性矩等物理量都需要由電腦程式算出,以便用於後續多面塊體碰撞行為之計算。而多面塊體在計算體積、慣性積、慣性矩時,對於多面塊體的形體無法像計算對稱的物體一樣單純只用對稱軸或是積分方式計算出,因此必須要先對多面塊體切割成數個四面體。藉由Simplex積分法來求得各個最簡積分單元的結果並且加總算出該多面塊體的體積、慣性積、慣性矩。 本論文針對許秀真(2001)的多面塊體模擬程式的塊體切割部分做更進一步的討論;另外提出新的切割方式,利用拋棄三稜頂點與降稜來切割多面體。在不增加新頂點的情況下,切割出的四面體數目甚至比許秀真的切割方法還要少。減少切割數的目的在於減少對單一塊最簡多面體-四面體的物理量之積分運算。最後探討判斷多面塊體切割最少及比較本論文與許秀真的切割結果。

English Abstract

In simulating the mechanical behavior of a polyhedron assembly, the volume and moment of inertia of each polyhedron have to be calculated based on the geometric and material information of each polyhedron. The purpose of this paper is to develop a computer sub-code which gives an efficient and effective way to achieve the goal. In the developed code, a polyhedron is divided into several tetrahedrons and the calculation of the volume and the moment of inertia of each tetrahedron follows. It is obvious that the less the divided tetrahedrons the less the calculation effort. However, the dissection of a polyhedron takes time too. So, a minimal dissection of a polyhedron may not necessarily be the most efficient choice. Comparison between two different dissection methods is presented in this paper as well as their dissection algorithms.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
  1. 11.林佳宏,「混合型剛體顆粒系統之數值模擬」,碩士論文,國立中央大學土木工程系,中壢(2005)。
  2. 23.Below A., Brehm U., De Lorea J., and Richter-Gebert J., “Minimal Simplicial Dissections and Triangulations of Convex 3-Polytopes”, Discrete and Computational Geometry,No.24 , pp.35-48(2000).
  3. 24. Bödenweber ,B., “Finite element mesh generation.” Computer-Aided Design, pp.285-291,(1984).
  4. 25.Cundall, P.A ., and O .D .L. Strack, “A Discrete Numerical Model for Granular
  5. 29. Endres, L., and Krysl, P.,“Octasection-based Refinement of Finite Element Approximations on Tetrahedral Meshes that Guarantees Shape Quality” Structural Engineering , Vol. 59, Issue.1, pp. 69-82(2004).
  6. 30. Funkenbusch, W. W., “From Euler''s formula to Pick''s Theorem Using an Edge Theorem”,Amer. Math. Monthly,81, pp.647-648(1974).
  7. 31. Giertsen, C.,“ Volume Visualization of Sparse Irregular Meshes.” IEEE Computer Graphics and Application,12, pp.40-48,(1992).
  8. 33. Holden, A., Shapes, space, and symmetry ,Columbia University Press,New York(1971).
  9. 36. Jean-Claude Martzloff.“ A History of Chinese Mathematics”,Springger , Paris(1987).
  10. 37. Kiang, T.. “An Old Chinese Way of Finding the Volume of a Sphere”, Math Gazette, Vol. LVI, pp.396(1972).
  11. 38. Loeb, A. L.,“Space structures their harmony and counterpoint ”,Birkhauser,Boston (1991).
  12. 39. M.E.G. Ong.“Uniform refinement of a tetrahedron.”SIAM Journal on Scientific Computing, 15, pp.1134–1144, (1994).
  13. 40. Milica Stojanovi´“Algorithms for Triangulating Polyhedra into A Small Number of Tetrahedra”Matematiqki Vesnik 57 , pp.1–9(2005).
  14. 41. Oldenburg, M., and Nilsson, L., “The Position Code Algorithm for Contact
  15. Searching,” Int. J. Numer. Meth. Engng., Vol. 37, pp. 359-368 (1994).
  16. 42. Peter, S. and Allan, T.,“A Polygonal Approximation to Direct Scalar Volume Rendering” Computer Graphics , ACM , Vol 24 ,Issue 5,pp.63-70(1990).
  17. 43. Pillards, T., and Cools,R., “A Theoretical View on Transforming Low-Discrepancy Sequences from A Cube to A Simplex” Monte Carlo Methods Appl. 10, No.3-4, 511-529(2004).
  18. 45. Rupert, J., and Seidel R., “On the Difficulty of Tetrahedralizing 3-Dimensional Non-convex Polyhedra”, Proceedings of the 5th ACM Symposium on Computational Geometry, pp. 380-392.(1989).
  19. 47.Shi, G.H.,“Discontinuous Deform ation Analysis, A new Numerical Model for the Static and Dynamics of Block systems, ”Ph. D. Thesis, Department of Civil Engineering, University of California at Berkeley (1988).
  20. 48. Sullivan J., John M., Charron, G., Paulsen, K. D. ,“ A three-dimensional mesh generator for arbitrary multiple material domains,”Finite Elements in Analysis and Design ,Volume: 25, Issue 3-4, pp. 219-241(1997).
  21. 49.Wang, S.P. and Nakamachi, E., “The Inside-O utside Contact Search Algorithm,”Int. J. Numer. Meth. Engng., Vol. 40, pp. 3665-685(1997).
  22. 50. Yong, Z., Weihai, C.,Zesheng, T. , “ An elaborate ambiguity detection method for constructing isosurfaces within tetrahedral meshes ,”Computers & Graphics ,Volume19, Issue3 , pp.355-364,(1995).
  23. 51. Zhong, Z.H . and Nilsson,L., “A Contact Searching Algorithm for General 3-D Contact-Impact Problems,” Computers and Structures, Vol. 34, No.2, pp.327-335
  24. 參考文獻
  25. 1.王懷權 ,數學的故鄉,成信文化,台北,第52-58頁(2001)。
  26. 2.石根華,「三維流形方法有限元滲流分析理論」,中興工程顧問社,台北(1999)。
  27. 3.左銓如、季素月,初等幾何研究,九章出版社,台北,第245-284頁(1998)。
  28. 4.黃文璋,數學欣賞,華泰文化,台北,第195-208頁(1999)。
  29. 5.楊忠道,淺論點集拓樸、曲面和微分拓樸,凡異出版社,新竹,第67-77頁(1999)。
  30. 6.江譯涵,多面形的歐拉定理和閉曲面的拓樸分類,智能教育出版社,香港,第1-54頁(2003)。
  31. 7.李學數,數學和數學家故事2,凡異出版社,新竹,第143-158頁(1992)。
  32. 8.李繼閔,《九章算術及其劉徽注研究》,九章出版社,台北,第5-40頁&第301-342頁(1992)。
  33. 9.李世昌,「三維多面塊體系統之數值模擬」,碩士論文,國立中央大學土木工
  34. 程系,中壢(2004)。
  35. 10.吳文俊,中國古代科技成就,中國青年出版社,北京,第80-100頁(1978)。
  36. 12.姜伯駒,一筆劃和郵遞路線問題,智能教育出版社,香港,第1-72頁(2003)。
  37. 13.徐誠浩,古典數學難題與伽羅瓦理論,凡異出版社,新竹,第13-52頁(1999)。
  38. 14.倫迪、薩頓(葉偉文 譯),典雅的幾何,天下遠見出版社,台北,第89-179頁(2002)。
  39. 15.許秀真,「多面塊體系統之運動模擬」,碩士論文,國立中央大學土木工程系,中壢(2001)。
  40. 16.美國中學數學研究會,幾何,教育部中等教育司譯,台北,第181-204頁(1965)。
  41. 17.原著 FELIX KLEIN (舒湘芹、陳義章、楊欽樑譯),高觀點下的初等數學 第二卷 幾何,九章出版社,台北,第3-23頁(1996)。
  42. 18.夏明德,幾何體的截面,上海科學技術出版社,上海,第33-62頁(1989)。
  43. 19.Courant R.著(譯者 吳定遠),數學導論,水牛出版社,台北,第276-279&第525-528頁(1972)。
  44. 20. Thomas H. C.,Charles E. L.,Ronald L. R.,Clifford S.(蕭世文 譯),演算法導論Introduction to Algorithms,文魁資訊,台北,第34章 第2-76頁(2004)。
  45. 21.錢寶琮、王孝通,緝古算術第二題、第三題術文疏證,第495~529頁(1983)。
  46. 22.Beck, A., Bleicher, M. N., and Crowe, D.W. “Excursions Into Mathematics”,
  47. New York, Worth, (1969).
  48. Assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65 (1979).
  49. 26. Cromwell, P., Polyhedra , Cambridge University Press, New York, pp.24-28 &35-44 (1997).
  50. 27. Chandrupatla, T.R.,and Belegundu, A.D.,Introduction to Finite Elements in Engineering, Prentice-Hall, New Jersey, pp. 281-285(2002).
  51. 28. Doi, A.,and Koide, A.,“ An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells.” IEICE Transactions, pp.214-224.(1991).
  52. 32. Gario, P.,“Cauchy''s theorem on the rigidity of convex polyhedra (Italian)”, Archimede , pp.53-69,(1981).
  53. 34. Imai, K.,“Structures of Triangulations of Points”Special Issue on Algorithm Engineering ,IEICE,Vol.E83-D,No.3,pp. 428-437(2001).
  54. 35. Joseph, O''Rourke.,“Computational Geometry in C 2nd ed”,Cambridge University Press, New York,pp.104-109(1998).
  55. 44. Plaumann, P., and Strambach K., Geometry-von Staudt''s Point of View,Geometry, Projective -- Congresses,pp.401-425(1981)
  56. 46. Smith, J.T.,“Methods of Geometry”,Wiley-Interscience, New York, pp. 92-100& pp. 381-406 (2001).
  57. (1990).
Times Cited
  1. 林鴻(2015)。以四面體離散化多面體系統之接觸分析與模擬。中央大學土木工程學系學位論文。2015。1-151。