透過您的圖書館登入
IP:44.222.169.36
  • 學位論文

微波存取全球互通頻段接收機前端電路暨K頻段低雜訊放大器之研製

The Design and Implementation of WiMax Receiver Front End and K-Band Low Noise Amplifier

指導教授 : 邱煥凱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文係以TSMC 0.18-μm CMOS 與0.35-μm SiGe BiCMOS 製程,研製接 收機射頻前端電路。而設計之電路主要包括應用於WiMax 系統之高線性度差動 低雜訊放大器、應用於WiMax 系統之前向饋入次諧波混頻器、使用在WiMax 系統之考畢茲壓控振盪器以及用於K 頻段之差動低雜訊放大器。 各電路之特性如下:WiMax 低雜訊放大器使用前向饋入校正技巧改善線性 度。藉由加入疊接補償轉導電路消除差動電路原有的非線性效應,在損失最少的 雜訊指數下得到線性度的改善。量測增益為15.2 dB,雜訊指數為2.95 dB,輸入 反射損耗為-23.3 dB,輸出反射損耗為-6.8 dB,而輸入1 dB 壓縮點為-13 dB,三 階截斷點為+3 dB,總功率消耗17.03 mW;使用轉導提升技巧之K 頻段差動低 雜訊放大器,利用變壓器耦合技巧,達成轉導提升的效果,使第一級放大器之功 耗與雜訊指數都能改善。量測增益為8.2 dB,雜訊指數為7.8 dB,輸入反射損耗 為-12.4 dB,輸出反射損耗為-10.2 dB,而輸入1 dB 壓縮點為-10 dB,三階截斷 點為0 dB,總功率消耗49.93 mW;次諧波混頻器使用差動前向饋入式轉導電路, 在消除三階非線性失真項的同時,也能增加主頻增益。量測RF 與IF 返回損耗 在2.5 – 2.7 GHz 均小於10 dB 以下。IF 降頻頻率為10 MHz,RF 頻率較LO 頻率 高,LO 功率為2 dBm 時最有效率,混頻器最大轉頻增益為6.2 dB。RF 頻率3-dB 操作頻寬為2.5 GHz – 3.9 GHz。IF 頻率3-dB 操作頻寬為10 MHz - 150 MHz。混 頻器增益壓縮點(1-dB compression point)為-8 dBm,三階截斷點(IIP3)為+5 dBm。 RF-LO、LO-IF 及RF-IF 隔離度均在-30 dB 以上。轉導提升之考畢茲壓控振盪器, 利用差動電路特性,達成轉導提升的效果,改善了以往考畢茲振盪器難起振的條 件,達到低功率的效能。頻率可調範圍為444 MHz,輸出功率為1.54 ~ 2.92 dB,離主頻100 KHz 之相位雜訊為-101.4 dBc/Hz,離主頻1 MHz 之相位雜訊為-124.1 dBc/Hz,振盪器本身消耗功率為2.46 mW。

並列摘要


The thesis investigates the functional block circuits for RF receivers. The designed circuits are implemented in TSMC 0.18-μm CMOS and 0.35-μm SiGe BiCMOS technologies. The implemented circuits include a high linearity differential low noise amplifier, a feed-forward sub-harmonic mixer, a Colpitts voltage controlled oscillator for WiMax applications. A K-band differential low noise amplifier is also studied for investigating the properties of differential circuits. In WiMax low noise amplifier, linearity is improved by using feed-forward correction technique. Since the using cascode compensation transconductor circuit, the nonlinearity of the differential circuit can be cancelled at the differential outputs and thus the LNA achieved high linearity without seriously degraded the NF. The WiMax low noise amplifier achieves a power gain of 15.2 dB, a noise figure of 2.95 dB, input/output return losses of 23.3 dB, and 6.8 dB, respectively. The measured 1-dB gain compression point and the input third-order intercept point are -13 dBm and +3 dBm, respectively, and total power consumption is 17.03 mW; A gm-boosting technique was applied in K-band low noise amplifier. The transistor transconductor is boosted by using transformer coupling. The K-band low noise amplifier achieves a power gain of 8.2 dB, a noise figure of 7.8 dB, input/output return losses of 12.4 dB and 10.2 dB. The 1-dB gain compression point and the input third-order intercept point are -10 dBm and 0 dBm, respectively, and total power consumption is 49.93 mW. In the sub-harmonic mixer design, a differential feed-forward transconductor stage was adopted to improve the third-order nonlinearity distortion and enhances the conversion gain, simultaneously, which cancelled the unwanted third order intermodulation products at the outputs. The obtained return loss of RF and IF ports are both better than 10 dB. Low side local oscillator (LO) frequency is selected and inter-mediate frequency (IF) is chosen as 10 MHz. the optimized LO driver is +2 dBm. The conversion gain of mixer is 6.2 dB, with its RF 3-dB bandwidth from 2.5 GHz to 3.9 GHz. The IF 3-dB bandwidth is measured from 10 MHz to 150 MHz. The 1-dB compression point and IIP3 are -8 dBm and +5 dBm, respectively. The port to port isolations of RF-LO, LO-IF and RF-IF are better than -30 dB. In gm-boosting Colpitts voltage controlled oscillator design, the power consumption can be reduced by employing differential circuit inherent characteristic. The voltage controlled oscillator yields a tuning range of 444 MHz, an output power of 1.54 ~ 2.92 dBm. The phase noise at 100 KHz and 1 MHz offset frequencies achieves -101.4 dBc/Hz and -124.1 dBc/Hz, respectively. The power consumption of the VCO core dissipates only 2.46 mW.

並列關鍵字

LNA Mixer VCO

參考文獻


[46] 曾卿銘, “3.1~10.6 GHz 超寬頻接收機前端電路之研究,"碩士論文, 2006,
[10] Y. S. Hwang, C. J. Kim, J. H. Kim, and H. J. Yoo “A controllable variable gain
[25] C. C. Meng, S. S. Lu, M. H. Chiang and H. C. Chen, “DC to 8 GHz 11 dB gain
[2] Y. Ding and R. Harjani, “A +18 dBm IIP3 LNA in 0.35 _m CMOS,” in IEEE
162–163, Feb. 2001.

延伸閱讀