Translated Titles




Key Words

有限元素法 ; 骨缺損 ; 共振頻率法 ; 實驗模態測試 ; 牙科植體 ; Finite Element Analysis ; Experimental Modal Analysis ; Resonant Frequency Response Method ; Bone defect ; Dental Implant



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

This study is based on the resonant frequency response to specify criteria for examining the defect severity in the bone of dental implant. Both the finite element analysis and the experimental modal analysis are applied to compare the differences between experiment and simulation. By reviewing relevant literatures, it is known that the design model is similar to the cantilever beam structure. Furthermore, the study applied the given formula to generalize a relation between resonant frequency response and model size. In this article, three modals were designed to test and verify whether the resonant frequency response is related to model defected depth. Then, we collated those data and defined a criterion to detect the defect bone depth with dental implant. The five detection steps include to defect the horizontal positions, to detect the entire defect, to detect the defect depth and quantity in vertical section, to detect the whole defect, and to analyze etc. In the end, we applied the method in the third model to verify its effectiveness.

Topic Category 工學院 > 機械工程學系
工程學 > 機械工程
  1. Adell, R., Lekholm, U. and Rockler, B. and Branemark, P. I., “ A 15 Years Study of Osseo-integrated Implants in the Treatment of the Edentulous Jaw,” International Journal of Oral and Maxillofacial Surgery, Vol. 10, No. 6, pp. 137-416 (1981).
  2. Albrektsson, T. and Albrektsson, B., “Osseo-intehration of Bone Implants: a Review of an Alterative Mode of Fixation,” Acta Orthopaedica Scandinavica, Vol. 58, pp. 567-577 (1987).
  3. Branemark, P.I, Brerine, U.and Adell, R., “Intraosseous Anchorage of Dental Prosthess: I Experimental Studies,” Scand J Plast Reconstar Surg, pp-81-100 (1963).
  4. Bossy, E., Talmant, M. and Laugier, P., “ Three-Dimensional Simulation of Ultrasonic Axial Transmission Velocity Measurement on Cortical Bone Models,” Acoustical Society of America, Vol.115, No. 5, pp.2314-2324 (2004).
  5. Christoph, J., “ The Laterally Varying Ultrasonic Velocity in the Dentin of Human Teeth,” Journal of Biomechanics, Vol. 39, No. 8, pp.2388-2396 (2005).
  6. Heller, J. G., Bradley, T., Estes, M. S. and Diop, A., “Biomechanical Study of Screw in the Lateral Masses: Variables Affecting Pull-out Resistance,” Journal of Bone and Joint Surgery, Vol. 78, No, 9, pp. 1315-1321 (1996).
  7. Jaecques, S., Pastrav, C., Zahariuc, A. and Van der Perre, G., “ Analysis of the Fixation Quality of Cementless Hip Prostheses Using a Vibrational Technique,” Proceedings of ISMA, pp.443-456 (2004).
  8. Johansson, C. B. and Albreksson, T., “Integration of Screw Implants in the Rabbit: a One-Year Follow-up of Removal Torque of Titanium Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 2, No. 2, pp. 69-76 (1987).
  9. Kaneko, T., “Pulsed Oscillation Technique for Assessing the Mechanical State of the Dental Implant-Bone Interface,” Journal of Biomaterials, Vol. 12, No. 6, pp. 555-560 (1991).
  10. Meredith, N., Alleyne, D. and Cawley, P., “ Quantitative Determination of the Stability of the Implant-Tissue Interface Using Resonance Frequency Analysis,” Clinical Oral Implants Research, Vol.7, No. 3, pp. 261-267 (1996).
  11. Muhlemann, H. R., “ Periodontometry, a Method for Measuring Tooth Mobility,” Oral Surgery, Oral Medicine, Oral Pathology, Vol. 4, No. 10, 1220-1233 (1951).
  12. Kim, J. and Stubbs, N., “ Crack Detection in Beam-Type Structures Using Frequency Data,” Journal of Sound and Vibration, Vol. 259, No.1, pp.145-160 (2003).
  13. Kitamura, E., Stegaroiu, R., Nomura, S. and Miyakawa, O., “Biomechanical Aspects of Marginal Bone Resorption Around Osseo-integrated Implants: Considerations Based on A Three-Dimensional Finite Element Analysis,” Clin. Oral Impl., Vol. 15, No, 3, pp.401-412 (2003).
  14. Kitamura, E., Stegaroiu, R., Nomura, S. and Miyakawa, O., “Influence of Marginal Bone Resorption on Stress around an Implant: a 3-Dimensional Finite Element Analysis, ” Journal of Oral Rehabilitation, Vo1. 32, No, 1, pp.279-286 (2005).
  15. Lee, S. Y., Huang, H. M., Lin, C. Y. and Shih, Y. H., “In vivo and in vitro Natural Frequency Analysis of Periodontal Conditions, an Innovative Method,” Journal ofPeriodontal Research, Vol. 71, No. 4, pp. 632-640 (1999).
  16. Meredith, N. and Sennerby, L., “Resonance Frequency Analysis: Measuring Implant Stability and Osseo-integration,” Compendium of Continuing Education Dentistry, Vol. 19, No. 5, pp. 493-502 (1998).
  17. Pattijn, V., Jaecques, S. V. N., De Smet, E., Muraru, L., Van Lierde, C., Van der Perre, G., Naert, I. and Vander Sloten, J., “Resonance Frequency Analysis of Implants in the Guinea Pig Model: Influence of Boundary Conditions and Orientation of the Transducer,” Medical Engineering & Physics, Vol. 28, No. 9, pp. 1119-1127 (2006).
  18. Piattelli, A., Corigliano, M., Scarano, A., Costigliola, G. and Paolantonio, M., “Immediate Loading of Titanium Plasma-Sprayed Implants: A Histological Aalysis I Monkeys, ”Journal of Period Ontology, Vo1. 69, No.6, pp.321-327 (1998).
  19. Protopappas, V., Baga, D., Fotiadis, D.,Likas, A., Papachristos, A. and Malizos, K., “An Ultrasound Wearable System for the Monitoring and Acceleration of Fracture Healing in Long Bones,” IEEE Transaction on Biomedical Engineering, Vol. 52, No. 9, pp.1597-1608 (2005).
  20. Qi, G., Mouchon, W., Tan, T., “How Much Can a Vibrational Diagnostic Tool Reveal in Total Hip Arthroplasty Loosening, ” Journal of Clinical Biomechanics, Vol. 18, No. 5, pp.444-458 (2003).
  21. Sunden, S., Grondahl, K. and Grondahl, H. G., “Accuracy and Precision in the Radiographic Diagnosis of Clinical Instability in Brånemark Dental Implants,” Clinical Oral Implants Research, Vol. 6, No. 4, pp. 220-226 (1995).
  22. Tada, S., Stegaroiu, R., Kitamura, E., Miyakawa, O. and Kusakari, H., “Influence of Implant Design and Bone Quality on Stress/Strain Distribution in Bone AroundImplant:A 3-dimensional Finite Element Analysis,” Journal of Oral & Maxillofacial Implant, Vol. 18, No. 3, pp. 357-368 (2003).
  23. William, D. and Callister, J. R. (2003), Materials Science and Engineering an Introduction, 4th ed., Willy, New York.
  24. 林世芬,「以激振方式分析人工牙根穩固度之相關性研究」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北(2002)。
  25. 陳璟鋒,「利用共振頻率初始值預測牙科植體之癒合時間及可能穩定值:以動物實驗及離體實驗」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北(2003)。
  26. 莊瀚伯,「牙科植體術後股缺損型態之結構分析」,碩士論文,國立中央大學機械工程研究所,中壢(2006)。
  27. 鄭光佑,「人工牙根穩固度檢測儀之設計與驗證」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北(2002)。
  28. Albrektsson, T (1985), Tissue-Integrated Prostheses: Osseo- integration in Clinical Denisity, Quintessence Publishing, Chicago (IL).
  29. Brunski, J. B. (1998), The Influence of Force, Motion and Related Quantities on the Response of Bone to Implants, Raven Press Ltd., New York.
  30. Çiftçi, Y. and Cancy, Ş., “The Effect of Veneering Materials on Stress Distribution in Implant-Supported Fixed Prosthetic Restorations,” International Journal of Oral and Maxillofacial Implants, Vol. 15, No.4, pp. 571-582 (2000).
  31. Doebling, S., Farrer, C., Prime, M. and Shevitz, D.(1999). Damage Identification and Health Monitoring of Structural and Mechanical System form Changes in Their Vibration Characteristics: A Literature Review, Los Alamos National Laboratory, California.
  32. Huang, H. M., Pan, L. C., Lee, S. Y., Chiu, C. L., Fan, K. H. and Ho, K. N.,“Assessing the Implant-Bone Interface by Using Natural Frequency Analysis,” Clinical Oral Implants Research, Vol. 90, No. 3, pp. 285-291 (2000).
  33. Jemt, T., Chai, J., Harnett, J., Heath, MR., Hutton, JE. and Johns, RB., et al. “A 5-yearprospective multicoated follow-up report on over dentures supported by osseointegrated implants,” International Journal of Oral Maxillofac Implants , pp291-298 (1996).
  34. Oka, H., Yamamoto, T. and Saratani, K., “ Automatic Diagnosis of Tooth Mobility for Clinical Use,” Medical Progress through Technology, Vol. 16, No. 3, pp. 117-124 (1990).
  35. Singh, R(2005), The Design Fabrication and Characterization of an Ultrasonic Crack Detection System for Human Teeth, PhD Thesis, University of California Los Angles, California.
  36. Thomson, W. T. (1995), Theory of Vibration with Applications, Prentice-Hall, New York.
  37. 王栢村(2002):振動學。全華科技圖書股份有限公司,臺北。
  38. 王栢村(2005):電腦輔助工程分析之實務與應用。全華科技圖書股份有限公司,臺北。
  39. 王大介,「利用共振頻率分析法研究植體在類似不同骨密度環境下之穩固度」,碩士論文,國防醫學院牙醫科學研究所,臺北(2004)。
  40. 林奕男,「懸臂樑結構尺寸與自然頻率及阻尼比關係之研究」,碩士論文,國立中興大學機械工程研究所,臺中(2004)。
  41. 陳精一(2005):ANSYS振動學實務分析。高立圖書有限公司,臺北。
Times Cited
  1. 吳柏勳(2011)。植牙術後穩固度評估研究。中央大學機械工程學系學位論文。2011。1-72。
  2. 謝易珊(2012)。結構振型探討牙科植體術後臨床骨缺損。中央大學機械工程學系學位論文。2012。1-94。
  3. 劉宇軒(2015)。三軸CNC工具機之多體動力學分析。虎尾科技大學機械設計工程研究所學位論文。2015。1-64。