Translated Titles

Design and Analysis of JPEG-LS algorithm with efficient segment-based rate control scheme for digital home media integration



Key Words

流量控制 ; JPEG-LS ; rate control ; JPEG-LS



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

隨著液晶顯示器 (LCD) 技術的發展,高速、高深度色彩及高解析度的需求都是不可或缺的。目前已發展出很多高速數位傳輸標準,例如高清晰度多媒體接口 (HDMI) 及無線-HD (wireless-HD)。由於一些物理性的限制,所以很多傳輸標準並不適用於數位家庭多媒體整合 (DHMI)。因此,在有限的記憶體及傳輸頻寬下,利用有提供比率控制技術的近似無失真壓縮演算法來達到其要求。對影像壓縮而言,壓縮率及高影像品質是很基本的需求。在數位家庭多媒體的應用上,為了使數位資料能有效地傳輸並節省硬體傳輸成本,所以我們整合了以列為基準的流量控制方法於JPEG-LS。 在本文中,為了實現低成本的DHMI,因而提出了一個有效且可行的解決方法,即在JPEG-LS上加入了以區段為基準的流量控制 (SBRC) 方法。 SBRC利用人眼感知特性及局部材質分析來最佳化信息損耗分配及達到最好的比率控制。因此,根據人眼感知的特性,我們提出來可支援縮放比例的JND模組來最佳化重建影像的品質。 實驗結果顯示,利用我們方法所得的模擬結果與沒有流量控制方法的JPEG-LS結果作比較,只降低了少數的PSNR。並且根據我們所提出的方法,可使多個媒體來源的數位資料只需透過單一的HDMI電纜就可傳輸至所對應的播放媒體。

English Abstract

With the advancement of liquid crystal display (LCD) technology, high speed, high-color-depth and high-resolution is indispensable. Many high speed digital transmission standards have been developed, such as High Definition Multimedia Interface (HDMI) and wireless-HD. Due to physical limitations, many transmission standards are not suitable for Digital Home Media Integration (DHMI). Moreover, in recent years, the near-lossless compression algorithm with rate control scheme is applied for limited memory storage and transmission bandwidth. For image compression, both compression ratio and high visual quality become primary requirements for high-end applications. In order to make the digital data to be transmitted efficiently and save the cost, we integrate row-level rate control scheme with the JPEG-LS for digital home media applications. In this thesis, an efficient and feasible solution with the segment-based rate control (SBRC) scheme in JPEG-LS for low cost DHMI is proposed. The SBRC scheme exploits the characteristics of human visual perception and local texture analysis to optimize the information loss distribution and achieves the best rate control. Furthermore, for human visual perception, the scaling JND model is developed to optimize the reconstructed image quality. Experimental results are reported to support the performance of the proposed scheme. With our method, the experiment results show that only minor PSNR is degraded in comparison with non-rate controlled JPEG-LS and the digital data can be transmitted from multiple source providers to the corresponding display media through a single HDMI cable.

Topic Category 資訊電機學院 > 電機工程學系
工程學 > 電機工程
  1. [2] M. J. Weinberger, J. Rissanen, and R. Arps, "Applications of universal context modeling to lossless compression of gray-scale images," Journal, IEEE Trans. Image Processing, vol. 5, pp. 575-586, Apr. 1996.
  2. [3] J. Jiang and C. Grecos, “A low cost design of rate controlled JPEG-LS near lossless image compression,” Journal, Image and Vision Computing 19, pp. 153-164, 2001.
  3. [4] Jianmin Jiang, “A Low-Cost Content-Adaptive and Rate-Controllable Near-Lossless Image Codec in DPCM Domain,” IEEE Trans. on image processing, vol. 9, No. 4, April 2000.
  4. [5] E.A. Edirisinghe and S. Bedi, “Variation of JPEG-LS to low cost rate control and its application in region-of-interest based coding,” Journal, Image and Vision Computing 18, pp. 357-372, 2003.
  5. [6] J. Jiang and S. Y. Yang, “ A Rate-Controlled Near Lossless Image CODEC Based on Visual Perception and Content Adaptability,” Proceedings of SPIE, multimedia systems and applications III, vol. 4209, 2001
  6. [7] C. Grecos and J. Jiang, “Achieving a better balance between image compression and image quality,” IEE Electron. Lett. 35, pp.2019-2020, Nov. 1999.
  7. [8] J. Jiang and M. Reddy, “Open-loop rate control for JPEG-LS near lossless image compression,” IEE Electron. Lett. , vol. 35, March 1999.
  8. [9] L. J. Lin and A. Ortega, “Bit-rate control using piecewise approximated rate-distortion characteristics,” IEEE Trans. Circuit Syst. Video Technol., vol. 8, pp. 446-459, Aug. 1998.
  9. [13] Krishnamoorthy, Rajeev, “High Definition, Anywhere: How Ultra Wideband Makes Wireless HDMI Possible,” IEEE consumer communications and networking conference, pp.395-399, Jan. 2007.
  10. [14] M.J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low complexity, context-based, lossless image compression algorithm,” in Proc. 1996 Data Compression Conference, Snowbird, UT, Mar. 1996, pp. 140-149.
  11. [16] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS,” IEEE Trans. on Image Processing, vol. 9, No. 8, Aug. 2000.
  12. [17] ---, “Opitmal prefix codes for sources with two-sided geometric distributions,” IEEE Trans. Inform. Theory, vol. 46, pp.121-135, Jan. 2000.
  13. [18] N. Merhav, G. Seroussi, and M. J. Weinberger, “Coding of sources with two-sided geometric distributions and unknown parameters,” IEEE Trans. Inform. Theory, vol. 46,pp. 229-236, Jan. 2000.
  14. [20] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. IT-12, pp.399-401, July 1966.
  15. [21] N. S. Jayant, J. D. Johnston, and R. J. Safranek, “Signal compression based on models of human perception,” IEEE Proc. Vol. 81, pp. 1385-1422, 1993.
  16. [22] C. H. Chou and Y. C. Li, “A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile,” Journal, IEEE Trans. Circuits Syst. Video Technol., vol. 5, pp. 467-476, Dec. 1995.
  17. [23] I. Höntsch and L. J. Karam, “Locally adaptive perceptual image coding,” Journal, IEEE Trans. Image Processing, vol. 9, pp. 1472-1483, Sept. 2000.
  18. [24] R. J. Safranek, “A comparison of the coding efficiency of perceptual models,” in Proc. SPIE, vol. 2411, pp. 83-91, 1995.
  19. [26] X. K. Yang, W. S. Lin, Z. Lu, E. P. Ong, and S Yao, “Just-noticeable-distortion profile with nonlinear additivity model for perceptual masking in color images,” IEEE Conf. on Acoustics, Speech, and Signal Processing, Vol. 3, April 2003.
  20. [27] Chun-Hsien Chou; Kuo-Cheng Liu, “A visual model for estimating the perceptual redundancy inherent in color images,” On Intelligent Multimedia, Video and Speech Processing, pp. 530-533, Oct. 2004
  21. [28] Shan Suthaharan, Seong-Whan Kim, and K. R. Rao, “A new quality metric based on just-noticeable difference, perceptual regions, edge extraction and human vision,” Electrical and Computer Engineering, vol. 30, pp. 81-88, 2005.
  22. [1] ISO/IEC JTC 1/SC 29/WG1 FCD 14495-public draft, July 16th, 1997. http://www.jpeg.org/public/jpeglinks.htm.
  23. [10] The digitimes Website. [online] http://tech.digitimes.com.tw/ShowNews.aspx
  24. ?zCatId=416&zNotesDocId=0000041629_A312WN52SW39VQ98XU8XP.htm.
  25. [11] The HDMI Website. [online] http://www.hdmi.org/manufacturer/technology. asp
  26. [12] Collins. L., “The big hook up - The consumer electronics industry has found its success is all about connections,” electronics systems and software, vol. 5, pp.12-15, Feb. 2007
  27. [15] Information Technology – Lossless and Near-Lossless Compression of Continuous-Tone Still Images, 1999. ISO/IEC 14495-1, ITU Recommend. T.87.
  28. [19] G. G. Langdon Jr., “An adaptive run-length coding algorithm,” IBM Tech. Disclosure Bull., vol. 26, pp. 3783-3785, Dec. 1983.
  29. [25] K. H. Yang, W. Zhu, and A. F. Faryar, “Perceptual Quantization for Predictive Coding of Images,” IEEE Trans. Image Processing, vol. 2, pp.381-385, Oct. 1999.