Title

探討酵母菌Glutaminyl-tRNA synthetase 對於粒腺體功能之影響

Translated Titles

Is glutaminyl-tRNA synthetase essential for the mitochondrial function of yeast?

Authors

葉曜榮

Key Words

tRNA 合成酶 ; 酵母菌 ; GlnRS ; Aminoacyl-tRNA synthetase ; AARS

PublicationName

中央大學生命科學系學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

王健家

Content Language

繁體中文

Chinese Abstract

Aminoacyl-tRNA (簡稱aa-tRNA) 的合成,對於蛋白質的生合成是非常重要的步驟,通常是藉由tRNA合成酶將胺基酸接到相對應的tRNA上。不過在Gln-tRNAGln的合成上卻是一個例外。在之前對於Saccharomyces cerevisiae的研究中指出,細胞質的glutaminyl-tRNA synthetase (簡稱GlnRS )是由GLN4基因所提供的,最近的研究發現細胞質的GlnRS會送到粒腺體中參與Gln-tRNAGln的合成。在本篇論文中我們利用細胞質的valyl-tRNA synthetase作為回報基因進一步找出其粒腺體標的訊號的範圍為包含第524 ~ 564號胺基酸,這段序列接近ATP的結合位 (KMSKS保留區域),這是少數的例子,其粒腺體標的訊號位於在內部序列當中同時也與主要的催化區重疊,但是對於細胞質的GlnRS是怎樣利用一段非傳統的N端粒腺體標的訊號去作用,其機制還不清楚。在Schizosaccharomyces pombe中並沒有發現有粒腺體標的訊號存在,所以我們認為這樣的標的訊號並不是所有酵母菌都擁有的。藉由功能性互補實驗、回報基因測試,發現GlnRS對於粒腺體功能的維持並不是必要的,因此在粒腺體中可能同時存在兩條途徑去合成Gln-tRNAGln。

English Abstract

Aminoacyl-tRNA (aa-tRNA) formation, an essential process in protein biosynthesis, is generally achieved by direct attachment of an amino acid to cognate tRNA by the aa-tRNA synthetases. An exception is Gln-tRNAGln synthesis. In Saccharomyces cerevisiae, the cytoplasmic glutaminyl-tRNA synthetase (GlnRS) activity is provided by the translational product of GLN4. Previous reports showed that this cytoplasmic GlnRS is also involved in mitochondrial Gln-tRNAGln synthesis. In this thesis, functional mapping using the cytoplasmic form of valyl-tRNA synthetase as the passenger protein identifies the peptide containing amino acids 524 ~ 564 of the enzyme as the mitochondrial targeting signal (MTS), which is close to the ATP-binding site (KMSKS conserved motif). This is one of the few examples, where MTS is embedded in the internal sequence, and is overlapped with the catalytic core domain of the enzyme. However, the detailed mechanism that enables GlnRS to be imported into mitochondria is not clear. In contrast, no MTS is found in Schizosaccharomyces pombe GlnRS, so this may be not a common feature for all yeast GlnRSs. Complementation tests further suggest that yeast GlnRS is not essential for mitochondrial function, and may serve as a redundant system for Gln-tRNAGln synthesis in mitochondria.

Topic Category 理學院 > 生命科學系
生物農學 > 生物科學
Reference
  1. Cahuzac, B., Berthonneau, E., Birlirakis, N., Guittet, E. and Mirande, M. (2000) A recurrent RNA-binding domain is appended to eukaryotic aminoacyl-tRNA synthetases. EMBO J 19: 445-52.
    連結:
  2. Carter, C. W. Jr. (1993) Cognition, Mechanism, and Evolutionary Relationships in aminoacyl-tRNA Synthetases. Annu Rev Biochem 62: 715-748
    連結:
  3. Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279: 13778-13785.
    連結:
  4. Cusack, S., Berthet-Colominas, C., Härtlein, M., Nassar, N., Leberman, R. (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature 347: 249-55
    連結:
  5. Deinert, K., Fasiolo, F., Hurt, E.C., Simos, G. (2001) Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J Biol Chem 276: 6000-8
    連結:
  6. Eriani, G., Delarue, M., Poch, O., Gangloff, J., Moras, D. (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347: 203-6
    連結:
  7. Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem Biophys Res Commun 98: 727-734
    連結:
  8. Feng, L., Tumbula-Hansen, D., Toogood, H., and Söll, D. (2003) Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Proc Natl Acad Sci USA 100: 5676–5681.
    連結:
  9. Gakh O, Cavadini P, Isaya G. (2002) Mitochondrial processing peptidases. Biochim Biophys Acta 1592: 63-77
    連結:
  10. Galani, K., Grosshans, H., Deinert, K., Simos, G. (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J 20: 6889-98
    連結:
  11. Hountondji, C., Dessen, P., and Blanquet, S. (1986) Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie 68: 1071-8
    連結:
  12. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126.
    連結:
  13. Ibba, M. and Söll, D. (2004) Aminoacyl-tRNAs: Setting the limits of the genetic code. Genes Dev 18: 731–738.
    連結:
  14. Ludmerer, S.W., Wright, D.J., and Schimmel, P. (1993) Purification of glutamine tRNA synthetase from Saccharomyces cerevisiae. A monomeric aminoacyl-tRNA synthetase with a large and dispensable NH2-terminal domain. J Biol Chem 268: 5519–5523
    連結:
  15. Maréchal-Drouard, L., Weil, J. H., and Dietrich, A. (1992) Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol 8: 115-131
    連結:
  16. Martinis, S. A., Schimmel, P. (1993) Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs required for specificity. J Biol Chem 268: 6069-72
    連結:
  17. Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetases : A new image for a classical family. Biochimie 81: 683-700
    連結:
  18. Mirande, M. (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40:95-142.
    連結:
  19. Mulero, J.J., Rosenthal, J.K., and Fox, T.D. (1994) PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA. Curr Genet 25: 299–304.
    連結:
  20. Neupert, W. (1997) Protein import into mitochondria. Annu Rev Biochem 66: 863-917.
    連結:
  21. Pelchat, M. and Lapointe, J. (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem Cel Biol 77: 343-347
    連結:
  22. Ribas de Pouplana, L. and Schimmel, P. (2001) Two classes of tRNA synthetases suggested by sterically Compatible dockings on tRNA acceptor stem. Cell 104: 191-193.
    連結:
  23. Saraste, M., Walker, J.E. (1982) Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS J 144: 250-4
    連結:
  24. Schimmel, P., R. and Soll, D. (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48:601-48.
    連結:
  25. Schön, A., Kannangara, C.G., Gough, S., and Söll, D. 1988. Protein biosynthesis in rganelles requires misaminoacylation of tRNA. Nature 331: 187–190.
    連結:
  26. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15: 5437–5448
    連結:
  27. Simos, G., Sauer, A., Fasiolo, F., and Hurt, E. C. (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell 1: 235–242
    連結:
  28. Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279: 49656-63
    連結:
  29. Rinehart, J., Krett, B., Juan, D., and Söll, D. (2007) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion. Genes Dev 19: 583-592
    連結:
  30. Whelihan, E.F., Schimmel, P. (1997) Rescuing an essential enzyme-RNA complex with a non-essential appended domain. EMBO J 16: 2968-74:
    連結:
  31. Wang, C. C. and Schimmel, P. (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274: 16508-16512.
    連結:
  32. Wilhelm, M. L., Reinbolt, J., Gangloff, J., Dirheimer, G., and Wilhelm, F. X. (1994) Transfer RNA binding protein in the nucleus of Saccharomyces cerevisiae. FEBS J 349: 260-264
    連結:
  33. Woese, C.R., Olsen, G.J., Ibba, M., and Söll, D. (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64: 202–236.
    連結:
  34. Xin, Y., Weidong, L., and Eric, A. F. (2000) The ‘KMSKS’ motif in Tyrosyl-tRNA synthetase participates in initial binding of tRNATyr. Biochimie 39: 340-347
    連結:
  35. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G.J., and Woese, C.R. (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447.
    連結:
  36. 桂妤 (2006)一個雙重功能的酵母菌tRNA合成酶之研究。中央大學碩士
    連結:
  37. 張嘉珮 (2007)酵母菌使用罕見轉譯起始密碼的可能性探討。中央大學碩士
    連結:
  38. Burbaum, J. J., Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266:16965-8.
  39. Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263:52-7
  40. Shen, W.-C., Selvakumar, D., Standford, D. R., and Hopper, A., K. (1993) The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J Biol Chem 268: 19436–19444
  41. 黃曉芸 (2005)酵母菌ALA1基因轉譯起始機制的研究。中央大學碩士論文
  42. 論文
  43. 論文
Times Cited
  1. 廖芝淇(2011)。酵母菌粒線體Gln-tRNAGln的形成。中央大學生命科學系學位論文。2011。1-79。