Translated Titles

Translation initiation of HTS1 in yeast



Key Words

轉譯起始機制 ; 酵母菌 ; translation initiation ; Histidyl-tRNA synthetase



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在酵母菌中有兩套不同的細胞核基因,分別控制細胞質及粒腺體 aminoacyl-tRNA synthetase(aaRS)的合成。這兩套細胞核基因在轉譯完成後,其中一個 aaRS 會留在細胞中進行細胞質蛋白質合成,而另外一個帶有粒腺體標的訊號的 aaRS 則會被送到粒腺體中去作用。然而Saccharomyces cerevisiae HisRS(ScHisRS)只用一個HTS1基因轉譯出兩種異構型酵素,分別在粒腺體與細胞質中進行胺醯化反應。HTS1基因上含有兩個in-frame的ATG,分別為ATG1及ATG21。根據前人實驗的結果發現HTS1基因,會轉錄出兩種mRNA,較長的mRNA包含了AUG1及AUG21,而較短的mRNA只有AUG21。在本實驗中我們選殖了Schizosaccharomyces pombe、Candida albicans和Aspergillus fumigatus的HTS1基因,利用互補性實驗鑑定這些基因的轉譯起始密碼,結果發現它們也有兩個in-frame的AUG,分別做出粒腺體與細胞質酵素。此外當我們比較ScHisRS及大腸桿菌的HisRS序列後,其中ScHisRS較大腸桿菌的N端多了一段34個胺基酸的附加區段,此附加區段並不能活化大腸桿菌GlnRS,因此推測ScHisRS附加區段不能增加E. coli GlnRS對酵母菌tRNAHis結合的親和力。此外,刪除了ScHisRS附加區段對於其細胞質和粒腺體的活性是沒有影響的,所以我們推測在in vivo的情況下HisRS的附加區段對於HisRS的催化活性並非必需的。

English Abstract

In yeast, there are two sets of aminoacyl-tRNA synthetases, one localized in the cytoplasm and the other in the mitochondria. Most of the mitochondrial tRNA synthetases are encoded by nuclear genes distinct from those encoding their cytoplasmic counterparts. However, some mitochondrial tRNA synthetases are encoded by the same genes that code for their cytoplasmic homologues. For example, the cytoplasmic and mitochondrial histidyl-tRNA synthetases of Saccharomyces cerevisiae (ScHisRS) are encoded by the same nuclear gene, HTS1, through alternative initiation of translation from two in-frame AUG codons. The gene specifies two messages, the longer one with two 5’-end in-frame AUGs and the short one with only the second AUG. In this study, we showed that the HisRS genes of Schizosaccharomyces pombe、Candida albicans and Aspergillus fumigatus have only one gene that also contain two in-frame AUG initiation codons. The mitochodrial and cytosolic forms are translated from the first and second AUG initiation codons, respectively. Besides, we found that ScHisRS had a lysine-rich N-terminal polypeptide extension of 34 residues, which was absent from its E. coli counterpart. Attachment of this appended domain to E. coli glutaminyl-tRNA synthetase did not enhance the enzyme’s tRNA-binding and aminoacylation activity toward yeast tRNAs. Deletion of the appended domain of ScHisRS had little effect on the enzyme’s complementation activity in vivo. These results suggest that the appended domain is not essential for the cytoplasmic and mitochondrial functions of ScHisRS in vivo.

Topic Category 理學院 > 生命科學系
生物農學 > 生物科學
  1. Arnez, J. G., Harris, D.C., Mitshler, A., Rees, B., Frnacklyn, C.S., and Moras, D. (1995) Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenelate. EMBO J 14: 4143.
  2. Arnez, J. G. and Moras, D. (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem. Sci 22: 211-216.
  3. Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in
  4. Cahuzac, B., Berthonneau, E., Birlirakis, N., Guittet, E. and Mirande, M. (2000) A recurrent RNA-binding domain is appended to eukaryotic aminoacyl-tRNA synthetases. EMBO J 19: 445-52.
  5. mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation. Genetics 132: 987-1001
  6. Cusack, S. (1997) Aminoacyl-tRNA synthetase. Current Opinion in Structural
  7. Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem Biophys Res Commun 98: 727-734.
  8. Freist, W., and Gauss, D.H. (1995b). Threonyl-tRNA synthetase. Biol Chem Hoppe Seyler 376: 213 – 224.
  9. Giegé, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26: 5017-5035
  10. Himmel, P. (1993) Purification of glutamine tRNA synthetase from Saccharomyces cerevisiae. A monomeric aminoacyl-tRNA synthetase with a large and dispensable NH2-terminal domain. J Biol Chem 268: 5519-23.
  11. Ludmerer, S. W., Wright, D. J., Sc Galani, K., Grosshans, H. Deinert, K. Hurt, E. C. and Simos, G. (2001) The intracellular location of two aminoacyl-tRNA synthetase depends on complex formation with Arc1p. EMBO J 20: 6889-6898.
  12. Maréchal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA
  13. genes in plants. Annu Rev Cell Biol 8: 115-131.
  14. Martinis, S. A., Schimmel, P. (1993) Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs required for specificity. J Biol Chem 268: 6069-72.
  15. Mirande, M. (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40: 95-142.
  16. Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. The Plant Cell 8: 1027-1039
  17. MuCha P. (2002) Aminoacyl-tRNA synthetases and aminoacylation of tRNA in the nucleus. Acta Biochim Pol. 49: 1-10.
  18. Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
  19. Kyriaki Galani, Helge Groβhans, Karina Deinert, Eduard C. Hurt and George Simos (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J 20: 6889-6898.
  20. Ribas de Pouplana, L. and Schimmel, P. (2001) Two classes of tRNA synthetases suggested by sterically Compatible dockings on tRNA acceptor stem. Cell 104: 191-193.
  21. Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human
  22. polymyositis serum antigen. ProC Natl Acad Sci USA 92: 4932-4936
  23. Schimmel, P., R. and Soll, D. (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48: 601-48.
  24. Steinmetz A. and Weil J. (1986). Isolation and characterization of chloroplast and cytoplasmic tRNAs. Methods in Enzymology 118: 212-231.
  25. Tzagoloff, A., Vambutas, A., and Akai, A. (1989) Characterization of MSM1, the structural gene for yeast mitochondrial methionyl-tRNA synthetase. Eur J Biochem 179: 365–371.
  26. Tzagoloff, A., Gatti, D., Gampel, A. (1990) Mitochondrial aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol 39: 129-58.
  27. Wang, C. C., Chang, K. J., Tang, H. L., Hsieh, C. J., Schimmel, P. (2003) Mitochondrial form
  28. of a tRNA synthetase can be made bifunctional by manipulating its leader peptide.
  29. Biochemistry 42: 1646-51.
  30. Wang, C. C. and Schimmel, P. (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274: 16508-16512.
  31. Burbaum, J. J., Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266: 16965-8.
  32. aminoacyl-tRNA synthetases. Annu Rev Biochem 62: 715-748
  33. Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring
  34. non-AUG codon in Saccharomyces cerevisiae. J Biol Che 279: 13778-13785
  35. Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263: 52-7.
  36. Chiu, M. I., Mason, T. L., Fink, G. R. (1992) HTS1 encodes both the cytoplasmic and
  37. Biology 7: 881-889.
  38. Freedman, R., Gibson, B., Donovan, D., Biemann, K., Eisenbeis, S., Parker, J., and Schimmel, P. (1985). Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts. J Biol Chem 260: 10063 – 10068.
  39. Freist, W., and Gauss, D.H. (1995a). Lysyl-tRNA synthetase. Biol Chem Hoppe Seyler 376: 451 – 472.
  40. Martinis, S. A., Plateau, P., Cavarelli, J., Florentz, C. (1999) Aminoacyl-tRNA
  41. synthetases: a family of expanding functions. EMBO J 18: 4591-4596.
  42. Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
  43. Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunction Arabdopsis thaliana genes coding for mitochondrial alternative use of two in-frame AUGs. Eur J Biochem 266: 848-854.
  44. 林明琁 (2005)探討一個真核tRNA合成酶的附加區段之轉錄活化活性。中央大學碩士論文
  45. 黃曉芸 (2005)酵母菌ALA1基因轉譯起始機制的研究。中央大學碩士論文
Times Cited
  1. 鄭鈺儒(2012)。探討酵母菌Histidyl-tRNA synthetase的特性。中央大學生命科學系學位論文。2012。1-90。