Title

微結構電化學加工底部R角之改善策略分析與實做研究

Translated Titles

Implementation research and improvement strategy analysis of microstructure bottom corner in electrochemical machining

Authors

洪偉誌

Key Words

微電化學加工 ; 底部R角 ; Micro electrochemical Machining ; Bottom corner radius

PublicationName

中央大學機械工程學系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

顏炳華

Content Language

繁體中文

Chinese Abstract

隨著電子產品的需求度增加,使得各種薄型化微小零組件的需求也隨之大幅提升。以手機鏡頭模組而言,其光學鏡頭承座由於厚度上的差異化,再加上採用高強硬不鏽鋼,無法全部採用沖壓方式進行加工,而現有的製程是採用化學蝕刻減薄後,再結合沖壓下料方式進行加工,其加工時間長(約10~20µm/h),因此,若將蝕刻改以電化學加工的方式,將可大大提升生產量。 本研究係利用微電化學的方式,對SUS304不鏽鋼薄板進行加工,針對加工後於工件底部所形成之R角半徑進行探討,期盼找出能使R角半徑為最小值之加工參數。在前置實驗中發現到電解液(NaNO3)的濃度必須在15wt%以上才有加工效果。以及使用二次性加工的方式進行加工時,會有較小的R角半徑,因為當加工深度越深時,R角半徑則會越小。 由實驗結果得知,當加工電壓與脈衝時間增加時,加工深度會隨之增加,R角半徑則會越小。當電壓為11V、脈衝為70µs,液壓為2kg/cm2以及電解液濃度為20wt%時,可加工出最小的R角半徑0.094mm。

English Abstract

The demand for electronic products has been rapidly increasing. The general trend of size reduction and thinning increases the demand for enhanced precision of manufactured products not only in terms of dimension and shape, but also in the roughness quality of the machined surface. To avoid complex assembly and reduce structural rigidity due to miniaturized components, integrally molded parts have been adopted to improve the precision. The stainless steel is often adopted as a miniaturized structural part materials in order to keep strength and anti-wear. But the production speed about 10~20 μm/h is limited by using etching method. Present process mostly adopted chemical etching connected with stamping to fabricate but etching time is too long and machining shape is limited in two dimension. This study presents two kinds of micro electrochemical machining processes to shorten the machining time and reduce the bottom corner radius of machined cavity. The high-precision electrode and fixtures is designed to fit the width specifications. The needed pattern and strip thickness of 20μm are removed by electrochemical machining. According to experimental results, the depth will increase with voltage and pulse-on time increasing, the bottom corner is getting smaller. The secondary processing method is better. The minimum radius of 0.094 mm is obtained as voltage of 11 V, pulse-on time of 70μs, pulse ratio of 50:50, electrode gap of 50μm, electrolyte pressure of 2 kg/cm2 and electrolyte concentration of 20 wt%.

Topic Category 工學院 > 機械工程學系
工程學 > 機械工程
Reference
  1. [1] 林聖育,磁場輔助微電化學鑽孔加工特性研究,國立中央大學機械工程系,碩士論文,2010。
    連結:
  2. [2] J. F. Wilson, (1st), Practice and Theory of Electrochemical Machining, Wiley-interscience, pp.4-7, 1971.
    連結:
  3. [3] B. Bhattacharyya, M. Malapati, J. Munda, “Experimental study on electrochemical micromachining”, Journal of Materials Processing Technology, Vol.169, pp.485-492, 2005.
    連結:
  4. [4] B. H. Kim, S. H. Ryu, D. K. Choi, C. N. Chu, “Micro electrochemical milling”, J. Micromech. Microeng., Vol.15, pp.124–129, 2005.
    連結:
  5. [5] J. C. Hung, B. H. Yan, H. S. Liu, H. M. Chow, “Micro-hole machining using micro-EDM combined with electropolishing”, J. Micromech. Microeng., Vol.16, pp.1480–1486, 2006.
    連結:
  6. [8] H. Suzuki, “Microfabrication of Chemical Sensors and Biosensors for Environmental Monitoring,”Materials Science and Engineering C,Vol. 12, pp. 55-61 (2000).
    連結:
  7. [10] V. Kirchner, X.H. Xia and R. Schuster, “Electrochemical Nanostructuring with Ultrashort Voltage pulses,” Acc. Chem. Res. Lond., Vol. 34, pp. 371-377 (2001).
    連結:
  8. [12] B. Bhattacharyya, J. Munda, “Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tools & Manufacture, Vol.43, pp.1301-1310, 2003.
    連結:
  9. [13] M. Kock, V. Kirchner and R. Schuster, “ Electrochemical Micromachining with Ultrashort Voltage Pulses-a Versatile Method with Lithographical Precision,” Electrochimica Acta, Vol.48, pp. 3213-3219 (2003).
    連結:
  10. [14] Se Hyun Ahn, Shi Hyoung Ryu, Deok Ki Choi, Chong Nam Chu, “Electro-chemical micro drilling using ultra short pulses,” Precision Engineering, Vol. 28, pp. 129-134 (2004).
    連結:
  11. [16] S.H. Ahn, S.H. Ryu, D.K. Choi, C.N. Chu, “Electrochemical micro drilling using ultra short pulses”, Precision Engineering, Vol.28, pp.129-134, 2004.
    連結:
  12. [17] Z. Fan, T. Wang, L. Zhong, “The mechanism of improving machining accuracy of ECM by magnetic field”, Journal of Materials Processing Technology, Vol.149, pp.409-413, 2004.
    連結:
  13. [18] T. Kurita, M. Hattori, “Development of new-concept desk top size machine tool”, International Journal of Machine Tools & Manufacture, Vol.45, pp.959-965, 2005.
    連結:
  14. [19] B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu, “Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid”, CIRP Annals - Manufacturing Technology, Vol.54, pp.191-194, 2005.
    連結:
  15. [20] M. Sen, H.S. Shan, “A review of electrochemical macro- to micro-hole drilling processes”, International Journal of Machine Tools & Manufacture, Vol.45, pp.137-152, 2005.
    連結:
  16. [21] X. Lu, Y. Leng, “Electrochemical micromachining of titanium surfaces for biomedical applications”, Journal of Materials Processing Technology, Vol.169, pp.173-178, 2005.
    連結:
  17. [22] J. A. Kenny and G. S. Hwang, “Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses,” Electrochemical and Solid-State Letters, Vol. 9, No.1, D1-D4 (2006).
    連結:
  18. [23] Y. F. Luo, “Differential equations for the ultra-fast transient migration in electrolytic dissolution”, Electrochemistry Communications Vol. 8, pp. 353-358 (2006).
    連結:
  19. [25] B. J. Park, B. H. Kim, C. N. Chu, “The Effect of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, CIRP Annals - Manufacturing Technology, Vol.55, pp.197-200, 2006.
    連結:
  20. [26] J. C. S. Neto, E. M. Silva, M. B. Silva, “Intervening Variables in Electrochemical Machining,” Journal of Materials Processing Technology,Vol. 179, pp. 92-96 (2006).
    連結:
  21. [27] B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, “Influence of tool vibration on machining performance in electrochemical micro-machining of copper”, International Journal of Machine Tools & Manufacture, Vol.47, pp.335-342, 2007.
    連結:
  22. [28] J. Munda, M. Malapati, B. Bhattacharyya, “Control of micro-spark and stray-current effect during EMM process”, Journal of Materials Processing Technology, Vol.194, pp.151-158, 2007.
    連結:
  23. [29] W. Natsu, T. Ikeda, M. Kunieda, “Generating complicated surface with electrolyte jet machining”, Precision Engineering, Vol.31, pp.33-39, 2007.
    連結:
  24. [30] M. S. Park, C. N. Chu, “Micro-electrochemical machining using multiple tool electrodes”, Journal of Micromechanics And Microengineering, Vol.17, pp.1451-1457, 2007.
    連結:
  25. [31] H. P. Tsui, J. C. Hung, J. C. You, B. H. Yan, “Improvement of Electrochemical micro drilling accuracy using helical tool”, International Journal of Machine & Manufacture processes, Vol.5, pp.499-505, 2008.
    連結:
  26. [32] L. Staemmler, K. Hofmann, H. Kuck, “Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses”, Microsyst Technol, Vol.14, pp.249-254, 2008.
    連結:
  27. [33] Tsuneo Kurita, Chiaki Endo, Yasuhiro Matsui, et al., “Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process”, International Journal of Machine Tools & Manufacture, Vol.48, pp.1599-1604, 2008.
    連結:
  28. [34] Hong Shik Shin, Bo Hyun Kim, Chong Nam Chu, “Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses”, Journal of Micromechanics And Microengineering, Vol.18, 2008.
    連結:
  29. [35] Chan Hee Jo, Bo Hyun Kim, Chong Nam Chu, “Micro electrochemical machining for complex internal micro features”, CIRP Annals - Manufacturing Technology, Vol.58, pp.181-184, 2009.
    連結:
  30. [37] S. Ali, S. Hinduja, J. Atkinson, M. Pandya, “Shaped tube electrochemical drilling of good quality holes”, CIRP Annals - Manufacturing Technology, Vol.58, pp.185-188, 2009.
    連結:
  31. [38] Shi Hyoung Ryu, “Micro fabrication by electrochemical process in citric acid electrolyte”, Journal of Materials Processing Technology, Vol.209, pp.2831-2837, 2009.
    連結:
  32. [39] 尤俊欽,結合電化學與電泳沉積之微孔複合加工研究,國立中央大學機械工程系,碩士論文,2008。
    連結:
  33. [41] 崔海平,電化學結合電泳精密拋光不銹鋼基材加工研究,國立中央大學機械工程系,博士論文,2008。
    連結:
  34. [43] 林聖育,磁場輔助微電化學鑽孔加工特性研究,國立中央大學機械工程系,碩士論文,2010
    連結:
  35. [44] 王祥安,電化學微加工於精微球狀鎢電極精修製程之研究,國立中央大學機械工程系,碩士論文,2010
    連結:
  36. [6] 朱樹敏,電化學加工技術,化學工業出版社,2006。
  37. [7] 胡錦芳,同軸噴吸法於微電解加工之研究,國立雲林科技大學機械工程系,碩士論文,2007。
  38. [9] V. Kirchner and P. Allongue, “Electrochemical Micro-Machining,” Accounts of Chemical Research, Vol. 34, No.5, pp. 371-377 (2001).
  39. [11] J. Fang, Z. Jin, et al., “ECM polishing research of assistant magneticfield”, Chin Surf. Eng. 15 (3), Vol.32, pp.24-26, 2002.
  40. [15] B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, International Journal of Machine Tools & Manufacture, Vol.44, pp.1577-1589, 2004.
  41. [24] T. Kurita, K. Chikamori, S. Kubota, M. Hattori, “A study of three-dimensional shape machining with an ECMM system”, International Journal of Machine Tools & Manufacture, Vol.46, pp.1311-1318, 2006.
  42. [36] Insoon Yang, Min Soo Park, Chong Nam Chu, “Micro ECM with ultrasonic vibrations using a semi-cylindrical tool”, International Journal of Precision Engineering and Manufacturing, Vol.10, pp.5-10, 2009.
  43. [40] 廖哲範,脈衝微電化學之加工應用與評估,國立中央大學機械工程系,碩士論文,2005。
  44. [42] 楊曜光,磁場輔助微電化學銑削加工特性之研究,國立中央大學機械工程系,碩士論文,2009。