Key Words

電弧爐還原碴 ; 鹼活化技術 ; 混合礦碴膠結材料 ; arc furnace reductive slag, ; alkali activation technology ; mineralslag mixed bonding materials



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

還原碴含有鈣、矽、鋁之氧化物,與水泥熟料相似,若能替代水泥使用,作為水泥系材料之膠結料使用,除可降低水泥產業所需之高耗能與高二氧化碳排放量,尚能達到廢棄物再利用之綠色效益。 目前由工業副產物作為膠結材料之研究已有不少實際應用,而以還原碴作為主要研究對象之混合膠結材料研究尚未廣泛討論,本研究將電弧爐還原碴、燃煤飛灰與水淬爐石粉等卜作嵐材料混合製成混合礦碴,取代部分水泥使用,探討混合爐碴使用於水泥系統中之膠結品質,並探討各種材料使用之限制。另一方面,並發展不使用波特蘭水泥之鹼活化系統,探討鹼活化技術對提升還原碴膠結性質之成效。 試驗結果顯示還原碴膠結品質較差,無法單獨作為膠結材料使用,必須限制其使用量,並搭配使用爐石粉提升整體強度,由於還原碴成分中存在Free-MgO,可能出現健性不良問題,而調整混合礦碴比例可明顯降低其對健性之敏感性。研究中亦探討養護條件不佳可能造成鹼活化物強度折減,建議於新拌後密封24小時,以確保鹼活化反應膠結強度之發展。

English Abstract

Electric arc furnace (EAF) reductive slag is similar to cement, having high content of calcium, silicon, and aluminum oxides. If EAF reductive slag can be used as bonding materials for concrete, we can achieve waste recycling and reduce the consumption of CO2. There have been lots of studies on using industry byproducts as concrete binder materials, the research of EAF reductive slag has not been widely discussed. This research used the mixture of EAF reductive slag, coal fly ash, and blast furnace slag (BFS) as pozzolan materials to replace part of protland cement in making concrete. The interactive comparison and proportioning guidelines of each of the materials were investigated. And then the results are applied to the system of alkali activation. The results show that the EAF reductive slag has lower binder quality than BFS. The use of BFS will enhance the compressive strength of mortar. It was also found that some free-MgO contained in EAF reductive slag could bring in some soundness issues. Proper proportioning of the minerals and EAF slag can reduce the sensitivith of the soundness results. Also, in the system of alkali activation, the curing condictions can affect the mortar’s compressive strength. It is suggested that fresh mortar be sealed for a period of 24 hours before it is exposed to the atmospheric environment.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
  1. 行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」(2001)。
  2. 林湧昱,「以電弧爐還原碴製成複合無機聚合物之研究」,國立中央大學土木工程研究所碩士論文(2012)。
  3. 戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」 ,國立台北科技大學材料及資源工程系(2005)。
  4. Bakharev T., Sanjayan J. G., and Cheng, Y. B.(1999), “ Alkali activation of Australian slag cement.” Cement and Concrete Research, 29(1), pp. 113-120.
  5. Criado, M., Palomo, A., Ferna´ndez-Jime´nez, A. (2005) , “ Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products .” Fuel 84, pp. 2048–2054.
  6. Criado, M., Palomo, A., Ferna´ndez-Jime´nez, A. (2010) , “Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description.” Fuel 89, pp. 3185–3192.
  7. Krizan, D., and Zivanovic, B., (2002) “ Effects of dosage and modulus of water glass on early hydration of alkali-slag cement.” Cement and Concrete Research, 32 (7), pp. 1181-1188.
  8. Luckman, M., Satish, V, and D, V.(2009) “ Cementitious and pozzolanic behavior of electric arc furnace steel Slags.” Cement and Concrete Research, 39(2), pp.102-109.
  9. Shi, C., and Day R. L.(1995), “ A calorimetric study of early hydration of alkali-slag cement.” Cement and Concrete Research, 25(6), pp. 1333-1346.
  10. Shi, C., and Day R. L.(1996), “ Some factors affecting early hydration of alkali-slag cement.” Cement and Concrete Research, 26(3), pp. 439-447.
  11. Shi, C, Day RL (2001). “ Comparison of different methods for enhancing reactivity of pozzolans.” Cement and Concrete Research, 31(5), pp. 813-818.
  12. Shi, C. (2004). “ Steel slag—its production, processing, characteristics, and cementitious properties.” J. Mater. Civ. Eng., 16(3), 230–236.
  13. Shi, C., Krivenko, P. V., Roy, D. (2006). “ Alkali-activated cements and concretes.” Taylor & Francis, New York.
  14. Song, S., and Jennings H. M.(1999), “ Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29(2), pp. 159-170.
  15. Wang, S. D., Scrivener, K. L., and Pratt, P. L., (1994) “ Factors affecting the strength of alkali-activated slag. ” Cement and Concrete Research 24(6)﹐pp. 1033-1043.
  16. Yip, C. K., Lukey, G. C. and Van Deventer, J. S. J.(2004) , “ The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cement and Concrete Research, 35(12), pp.1688-1697.
  17. 行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」(1999)。
  18. 余耀騰、林平全、施延照、黃兆龍、蔡敏行,「電弧爐煉鋼還原碴資源化應用技術手冊」,中技社綠色技術發展中心,台中(2001)。
  19. 李宜桃,「鹼活化還原碴漿體收縮及抑制方法之研究」,國立中央大學土木工程研究所碩士學位論文(2002)。
  20. 吳明富,「還原碴-高爐石作為混合膠結材之應用」 ,國立中央大學土木工程研究所碩士論文(2013)。
  21. 傅國柱,「還原碴取代部分水泥之研究」,國立中央大學土木工程研究所碩士學位論文(2002)。
  22. 經濟部工業局,「電弧爐煉鋼還原碴資源化應用技術手冊(2001)。
  23. 蕭遠智,「鹼活化電弧爐還原碴漿體之水化反應特性」,國立中央大學土木工程研究所碩士學位論文(2002)。
  24. 鐘文煥,「爐碴細粒料應用於製作鹼活化還原碴混凝土可行性研究」,國立中央大學土木工程研究所碩士論文(2010)。
  25. Jimenez A. F., Palomo J. G., and Puertas F.(1999), “ Alkali-activated slag mortars mechanical strength behavior.” Cement and Concrete Research, 29, pp. 1313-1321.
  26. Mindess﹐S., and Young, J. F., (1981) Concrete (Englewood Cliffs, NJ: Prentice-Hall International, Inc. ).