Title

智慧型運動控制器之研發

Authors

王仕銘

Key Words

干擾觀測器 ; 基因演算法 ; 振動抑制

PublicationName

中央大學機械工程學系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

董必正

Content Language

繁體中文

Chinese Abstract

本論文主要針對馬達驅動之運動系統,使用一個干擾觀測器的運動架構,該控制架構主要用於驅動器之速度迴路,由輸入訊號減去參考模型第一階的倒數之輸出訊號所組成,並且選用適合的低通濾波器,讓干擾觀測器在實驗平台上得到有效的結果。該控制方案可以減少由參考模型和未知的系統模型之間的差異所造成的不確定性和外界之干擾。 另外提出一個消除系統由非線性因素所造成之自我激發振盪(hunting)之抑制控制架構,該控制架構係用於速度迴路,並使用基因演算法調整出該控制抑制架構Ka、Ks值,使得振動抑制控制架構可以有效抑制此系統所造成的振盪。

English Abstract

In this paper, the motion system for motor drive, using a disturbance observer movement structure, the control architecture is mainly used for the speed of the drive circuit, the input signal is subtracted from the reference model of the reciprocal of the first-order output signal composed, and selected suitable low- pass filter, so the disturbance observer effectively results in the experimental platform. This control scheme can reduce uncertainty and no interference by the external reference model and the differences between models of the unknown system caused. Another proposes a framework to eliminate inhibitory control system caused by the nonlinear factors of self-excited oscillation (hunting) of the control system for the speed loop architecture and uses a genetic algorithm to adjust the control to suppress architecture Ks、Ka value, so that the vibration inhibitory control architecture can effectively suppress oscillations caused by this system.

Topic Category 工學院 > 機械工程學系
工程學 > 機械工程
Reference
  1. [1] W. H. Yao, P. C. Tung, C.C. Fuh, F. C. Chou, “A robust uncertainty controller with system delaycompensation for an ILPMSM system with unknown system parameters,” IEEE Transactions onIndustrial Electronics, Vol. 58, pp. 4727-4735, 2011.
    連結:
  2. [2] D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” J. DynamicSystems, Measurement and Control, Transactions of the ASME, vol.107, no.1, pp.100–103, Mar. 1985.
    連結:
  3. [3] B. Friedland and Y.-J. Park, “On adaptive friction compensation,” IEEE Trans. Autom. Control, vol.37,no.10, pp.1609–1612, Oct. 1992.
    連結:
  4. [4] B. Armstrong-H´elouvry, P. Dupont, and C. Canudas de Wit, “A survey of models, analysis tools andcompensation methods for the control of machines with friction,” Automatica, vol.30, no.7,pp.1083–1138, Jul. 1994.
    連結:
  5. [5] P. Herman, “Velocity controller with friction compensation,” IET Control Theory Appl., vol. 1, no. 1,Jan. 2007
    連結:
  6. [7] C. Canudas de Wit, H. Olsson, K.J. A˙ stro¨m, and P. Lischinsky, “A newmodel for control of systemswith friction,” IEEE Trans. Autom. Control, vol.40, no.3, pp.419–425, Mar. 1995.
    連結:
  7. [8] C. M. Lin and H. Y. Li “A novel adaptive wavelet fuzzy cerebellar model articulation control systemdesign for voice coil motors,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 2024-2033 Apr. 2012.
    連結:
  8. [9] H. B. Shin and J. G. Park, “Anti-windup PID controller with integral statepredictor for variable-speed
    連結:
  9. [11] F. J. Lin, P. H. Chou, C. S. Chen and Y. S. Lin, “DSP-Based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control,” IEEE Trans. Ind. Electron., vol. 59,no. 2, pp.1061-1073, Feb. 2012.
    連結:
  10. [12] C. Hu, B. Yao and Q. Wang, “Global task coordinate frame-based contouring control oflinear-motor-driven biaxial systems with Accurate parameter estimations,” IEEE Trans. Ind. Electron.,vol. 58, no. 11, pp.5195-5205, Nov. 2011.
    連結:
  11. [13] B. K. Kim, W. K. Chung and K. Ohba, “Adaptive robust precision motion control of systems withunknown input dead_zones a case study with comparative experiments,” IEEE Trans. Ind. Electron., vol.58, no. 6, pp.2454-2464, Jun. 2011.
    連結:
  12. [14] F.J. Lin, L.T Teng, and Y.C. Hung, “Modified elman neural network controller with improved particleswarm optimization for linear synchronous motor drive,” IET Electr. Power Appl., vol. 2, no. 3, pp.201-214, 2008.
    連結:
  13. [15] F.J. Lin, J.C. Hwang, P.H. Chou, and Y.C. Hung, “FPGA-based intelligent-complementary sliding-mode control for PMLSM servo-drive system,” IEEE Trans. Power Electron., vol. 25, no. 10, ,pp.2573–2587, Oct. 2010.
    連結:
  14. [19] 姚維翰, 無鐵心線性永磁同步馬達驅動系統之設計與控制,國立中央大學,博士論文,中華民國101年
    連結:
  15. [6] D. A. Haessig, Jr. and B. Friedland, “On the modeling and simulation of friction,” J. Dynamic Systems,Measurement and Control, Transactions of the ASME, vol.113, no.3, pp.354–362, Sep. 1991.
  16. [10] motor drives,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp.1509-1516, Mar. 2012.
  17. [16] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991
  18. [17] 黃大維, 以干擾觀測器補償永磁式線性馬達之鈍齒效應包含DSP即時多工控制系統之移植, 國立交通大學,碩士論文,中華民國96年[18] 維基百科,http://zh.wikipedia.org/wiki/%E4%BD%8E%E9%80%9A% E6%BB%A4%E6%B3%A2%E5%99%A8
  19. [20] 王進德,類神經網路與模糊控制理論入門與應用,全華科技圖書股份有限公司,台北,民國九十七年。