Title

中壢地區光達消光散射比之長期分析與污染物關聯性研究

Authors

李慶偉

Key Words

光達 ; 消光散射比 ; Lidar ; Backscatter to scatter ratio

PublicationName

中央大學大氣物理研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

王聖翔

Content Language

繁體中文

Chinese Abstract

大氣氣膠種類對於污染物來源追蹤、衛星觀測反演假設、及輻射驅動力計算等皆有顯著的影響,而東亞為全球氣膠種類最複雜之區域,如何有效判別氣膠種類,為一個具有挑戰性的課題。過去研究指出,光達消光散射比(Lidar ratio, Sp)對應其他氣膠光學參數,能有效應用於區分氣膠種類。因此,本研究著重分析微脈衝光達長期消光散射比等資料,輔以氣膠垂直剖面分類及氣流後推軌跡資訊,解析中壢地區光達消光散射比與氣膠來源類型之關聯性。 分析環保署中大站2005-2012年長期資料結果顯示,3月氣膠光學厚度最高約0.8,為平均值(0.4)的兩倍,說明春季受境外傳送影響顯著。結合氣膠消光係數垂直剖面與氣膠傳送特徵,歸納出兩種氣膠垂直分布結構:Type 1 (單層傳送)與Type 2 (雙層氣膠),其中Type 1常出現秋季(10,11月),而Type 2主要出現於春季(3,4月)。Type 1中,根據氣流區分不同來源區域對應之Sp,發現亞洲大陸(Asia continental, AC)、太平洋(Pacific ocean, PO)、東南亞地區(Southeast Asia, SA)分別為3917sr、3012sr、3818sr,因Sp值越低代表氣膠光學散射特性越明顯,推估AC有微量沙塵特性,PO則與海洋氣膠類型一致。進一步結合環保署沙塵暴監測網資料,分析Type 2於不同高度下之氣流軌跡,將沙塵暴與生質燃燒事件進一步篩選,結果發現沙塵期間Sp平均值為4016sr,生質燃燒期間Sp頻率分布呈現鞍形分布特性,第一峰值30-50sr,第二峰值範圍60sr至80sr,前者與都市污染有關,後者呈現生質燃燒氣膠特性。本研究透過簡化分類氣膠垂直剖面,並結合後推氣流軌跡分析,以Sp做為鑑別氣膠來源種類的指標,歸納出傳送至中壢地區之氣膠約略可分為四種類型:都市、沙塵、生質燃燒與海洋性氣膠,其Sp分別為4218、346、6912與3012sr,此結果有助於未來污染物來源監測之應用。

English Abstract

ABSTRACT Aerosol types play an important role for air pollutant tracking, satellite retrieval, and atmospheric radiation calculation. In addition, East Asia is the most complex region of aerosol type in the world, and aerosols type classification could be challenge for this region. Pervious studies proven that the extinction to backscatter ratio (lidar ratio, Sp) can be applied to distinguish aerosols types effectively. Therefore, this study focus on studying the relationship between aerosol types and aerosol optical properies. We analyzed long-term data of Sp and other optical properties. Information of the aerosol vertical uding distribution and air mass trajectories was used to clarify our founding. Eight years (2005-2012) of EPA-NCU Micro-PulseLidar observationswere applied in this study. Seasonal variation of aerosol optical depth (AOD) shows highest AOD (~0.8) in Mar, about two times higher than average value of 0.4. The high AOD in spring is attributed to long-range transport of biomass-burning aerosols from Indochina According to aerosol profile classification, extinction profiles were classified into two types: Type 1 (near-surface aerosol transport) and Type 2 (double layer aerosol transport). Fall season (Oct-Nov) is the prevailing season for the Type 1, whereas Type 2 mainly happened in spring (Mar-Apr). In type 1, air masses were travelled from 3 sectors: Asia continental (AC), Pacific Ocean (PO), and Southeast Asia (SA). The mean Sp values for the three sectors are 3917sr for AC, 3012sr for PO, and 3818sr for SA. According the meaning of Sp, a low Spimplies a stronger scattering characteristic. The Sp results suggest aerosol from AC sector contain dust particle, and aerosols from PO are most likely sea-salt. We further combine the EPA dust event database and backward trajectory analysis for Type 2. Results show that Sp is 4114sr for dust storm events. The histogram of Sp for biomass burning events in Type 2 shows two peaks pattern. The first peak occurred within range of 30-50sr corresponding to urban pollutant, whilesecond peak occurred within range of 60-80sr in relation to biomass burning. Finally, our study summarized the Sp values for four major aerosol types over NCU:Urban (4218sr), Dust (346sr), Biomass burning (6912sr), Oceanic (3012sr). The relationship between Sp and aerosol types based on our study can be applied to air pollutant monitoring.

Topic Category 基礎與應用科學 > 大氣科學
地球科學學院 > 大氣物理研究所
Reference
  1. 王聖翔(2007),亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理研究所博士論文。
    連結:
  2. 江智偉、倪簡白(2006),光達遙測中壢地區夜間邊界層變化和低層噴流之討論。大氣科學第三十五期第一號,1-11。
    連結:
  3. 江智偉、達斯、倪簡白(2009),衛星籌載光達和地面光達之氣膠與雲量測比較。大氣科學第三十7期第一號,11-25。
    連結:
  4. 徐睿鴻(2007),鹿林山與中壢氣膠光學垂直特性之監測與比較。國立中央大學大氣物理研究所碩士論文。
    連結:
  5. 郭俊江(2006),光達及太陽輻射儀之應用:2005 年中壢氣膠光學垂直特性及邊界層高度之變化。國立中央大學大氣物理研究所碩士論文。
    連結:
  6. 徐睿鴻(2007),鹿林山與中壢氣膠光學特性之監測與比較。國立中央大學,大氣物理研究所碩士論文。
    連結:
  7. 徐開炫(2010),2009年春季鹿林山背景站氣膠垂直分布與光學特性分析。國立中央大學大氣物理研究所碩士論文。
    連結:
  8. Ackerman, J. (1998), The extinction-to-backscatter ratio of tropospheric aerosol : A numerical study. J. Atmos. Oceanic Technol. 15, 1043-1050.
    連結:
  9. Ackerman, A. S., O. B Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. welton (2000), Reduction of tropical cloudiness by soot, Science288, 1042-1047.
    連結:
  10. Campbell, J. R., J. S. Reid, D. L. Westphal, J. Zhang, J. L. Tackett, B. N. Chew, E. J. Welton, A. Shimizu, N. Sugimoto, K. Aoki, and D. M. Winker (2013), Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP. Atmospheric Research122, 520-543.
    連結:
  11. Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang (2002), Full-time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites : Instrument and Data Processing. J. Atmos. Oceanic Technol19, 431-422.
    連結:
  12. Cattrall, C., J. Reagan., K. Thome, and O. Dubovik (2005), Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. J. Geophys. Res.,110, D10S11.
    連結:
  13. Chen, W.-N., Y.-W. Chen, C. C. K. Chou, S.-Y. Chang, P.-H. Lin, and J.-P. Chen (2009), Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan. Atmospheric Environment 43, 2700-2716.
    連結:
  14. Chen, W.-N., F. J. Tsai, Charles C. K. Chou, S. Y. Chang, I. W. Chen, and J. P. Chen (2007), Cases studies of Asian Dust in the Free Atmosphere by Raman Depolarization Lidar at Taipei, Taiwan, Atmospheric Environment41, 7698–7714.
    連結:
  15. Chen, W.-N., F.-J. Tsai, C. C. K. Chou, S.-Y. Chang, Y.-W. Chen, and J.-P. Chen (2007), Cases Study of Relationship Between Water-soluble Ca2+ and Lidar Depolarization Ratio for Spring Aerosol in the Boundary Layer, Atmospheric Environment 41, 1440-1455.
    連結:
  16. Chen, Z., W. Liu, B. Heese, D. Althausen, H. Daars, T. Cheng, X. Shu, and T. Zhang (2014), Aerosol optical properties observed by combined Raman-elastic backscatter Lidar in winter 2009 in Pearl River Delta, south China. J. Geophys. Res.,119, 2496-2510.
    連結:
  17. Chiang, C.-W., S. K. Das, and J.-B. Nee (2008), An iterative calculation to derive extinction-to-backscatter ratio based on lidar measurements. Journal of Quantitative Spectroscopy and Radiative Transfer109, 1187-1193.
    連結:
  18. Collis, R. T. H., M. G. H. Ligda (1965), Lidar observation of cloud, Science149, 978-981.
    連結:
  19. Collis, R. T. H., W. Viezee, E. E. Uthe, J. Oblanas (1971), Lidar observations of artificial fog dispersal operations. J. Geophys. Res.,76, 5104-5109.
    連結:
  20. Dubovik, O., et al (2006), Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res.,111, D11208.
    連結:
  21. Eck et al., (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J. Geophys. Res.,110, D06202.
    連結:
  22. Huang, Z., J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi (2010), Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res.,115, D7.
    連結:
  23. Haywood, J. M., V. Ramaswamy, and B. J. Soden (1999), Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans. Science 283, 1299-1303.
    連結:
  24. Lin, N.-H. et al. (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
    連結:
  25. Müller, D., A. Ansmann, V. Freudenthaler, K. Kandler, C. Toledano, A. Hiebsch, J. Gasteiger, M. Esselborn, M. Tesche, B. Heese, D. Althausen, B. Weinzierl, A. Petzold and W. von Hoyningen-Huene (2010), Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape-dependent particle properties. J. Geophys. Res.,115, D11207.
    連結:
  26. Müller, D., A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen and G. Pisani (2007), Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res.,112, D16202.
    連結:
  27. Müller, D., M. Tesche, H. Eichler, R. Engelmann, D. Althausen, A. Ansmann, Y. F. Cheng, Y. H. Zhang and M. Hu (2006), Strong particle light absorption over the Pearl River Delta (south China) and Beijing (north China) determined from combined Raman lidar and Sun photometer observations. Geophysical Research Letters33, L20811.
    連結:
  28. Murayama, T., D. Müller, K. Wada, A. Shimizu, M. Sekiguchi and T. Tsukamoto (2004), Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003. Geophysical Research Letters31, 23-32.
    連結:
  29. Omar, A. H., D. M. et al. (2009), The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Journal of Atmospheric and Oceanic Technology 26, 23-32.
    連結:
  30. Sawamura, P., J. P. et al. (2012), Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere. Environmental Research Letters7, 034013.
    連結:
  31. Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker (2003), Effect of wind speed on columnar aerosol optical properties at Midway Island. J. Geophys. Res.,108, D24, 4802.
    連結:
  32. Spinhirne, J. D. (1993), Micro pulse lidar. IEEE Trans. Geo. Rem. Sens 31, 48-55.
    連結:
  33. Takamura. T., Y. Sasano (1990), Aerosol optical properties inferred from simultaneous lidar, aerosol-counter and sunphotometer measurements. J. Met. Soc. Japan.,68, 731-739.
    連結:
  34. Hayasaka. T., Y. Meguro, Y, Sasano, and T. Takamura (1994), Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements. Appl. Opt33, 7132-7140.
    連結:
  35. Voss, K, J., E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds (2001), Aerosol optical depth measurements during the Aerosols99 experiment. J. Geophys. Res.,106, 20,811-20,819.
    連結:
  36. Wang, S.-H., N.-H. Lin, M.-D. Chou, S.-C. Tsay, E. J. Welton, N. C. Hsu, D. M. Giles, G.-R. Liu, and B. N. Holben (2010), Profiling transboundary aerosols over Taiwan and assessing their radiative effects. J. Geophys. Res.,115, D00K731.
    連結:
  37. Wang, S.-H. et al., (2013), Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during 7SEAS/Dongsha experiment. Atmospheric Environment 78, 124-133.
    連結:
  38. Welton, E. J., K. J. Voss, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res.,107, D19, 8019.
    連結:
  39. 江智偉(1999),偏振雷射雷達達對卷雲的量測。國立中央大學物理研究所碩士論文。
  40. 江智偉(2005),對流層氣膠光學性質之研究。國立中央大學物理研究所博士論文。
  41. 賈浩平(2008),微脈衝光達及太陽輻射儀之應用:2005-2007 年中壢地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士。
  42. 施懿峯(2009),利用光達技術探測氣膠與水汽之作用。國立中央大學化學研究所碩士論文。
  43. Chen, W.-N., C. C. Tsao, and J. B. Nee (2004), Tropospheric and Lower Stratospheric Temperature Measurement by Rayleigh Lidar, J. of Atmospheric and Solar-Terrestrial Physics 66, 39-49.
  44. Krishnamurti, T. N., T. Suresh, E. Desa, S. G. P. Matondkar, A. Mascarenhas, S. R. Nayak, P. Naik, B. N. Goswami, and T. Iwasaki (2006), An algorithm to determine backscattering ratio and single scattering albedo. Engineering & Instrumentation64040V, 1-7.
  45. Mona, L., Z. Liu, D. Müller, A. Omar, A. Papayannis, G. Pappalardo, N. Sugimoto and M. Vaughan (2012), Lidar Measurements for Desert Dust Characterization: An Overview. Advances in Meteorology 201, 356265, 1-36.
  46. Singh, U. N., T. A. Berkoff, Q. Ji, E. Reid, S. Valencia, E. J. Welton and J. D. Spinhirne (2005), Analytically derived thermal correction to reduce overlap bias errors in micro-pulse lidar data. Proc. SPIE 5984, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing, 59840R.