Title

利用雷達觀測直接反演氣象變數進行資料同化以改進短期定量降水預報-2008 SoWMEX IOP8 個案分析

Translated Titles

Direct retrieval of meteorological variables using weather radar for assimilation

Authors

廖浩彥

Key Words

熱動力反演 ; 水氣調整 ; Thermodynamic retrieval ; water vapor adjustment

PublicationName

中央大學大氣物理研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

廖宇慶

Content Language

繁體中文

Chinese Abstract

雷達觀測具有高時空解析度的優點,常使用於劇烈天氣的監控與觀測。本研究是延續及改善前人的工作,選取2008西南氣流實驗計畫(SoWMEX)的IOP8個案,利用多都卜勒雷達觀測資料,改善模式當時的初始場,增進模式降水定量預報之能力。此方法主要包含三大部分:(1)多都卜勒風場合成、(2)熱動力反演、(3)水氣調整。然而前人的實驗存在一些問題:(1)同化後模式初始場壓力與反演的壓力場有很大差異,顯示壓力場並沒有被完整地同化到模式中;(2)模式預報時邊界會出現錯誤回波;(3)定量降水預報的高估及位置偏差。   為了改善這些問題,吾人更換將反演之壓力場置入模式的方式,及利用新的水氣調整的方法,其結果顯示在預報回波結構及降水預報都有明顯的改善,且能修正前人實驗的問題,令降水預報更加準確。而在各雲微物理方案測試中,以WSM6物理方案較為合適此實驗的降水預報。   當進行熱動力反演時可利用探空資料來提供每個高度層的水平壓力擾動平均,但是當沒有探空資料時,本研究利用模式當時預報場的每層平均壓力擾動來代替探空所提供的水平壓力擾動平均,從而反演出大氣壓力場。本實驗結果顯示沒有使用探空資訊,其降雨預報結果會較有探空時的降水預報為高估,但其預報仍有一定程度的準確性,因此在沒有探空時此方法是可行的。若只利用模式預報而不作任何的雷達資料同化,其降水預報結果十分不理想,也顯示只需兩筆時間的雷達資料並透過此反演同化方法,便可對定量降水預報有很好的改善。   由於雷達觀測的範圍是有限制,因此利用二次雷達資料同化讓模式得到更密集的大氣狀態資訊,可以有效改善降水預報的效果。實驗結果顯示利用二次同化方法,可以修正一次同化的強降雨區位置誤差,也減少了模式預報強回波時出現高估的程度,且二次同化方法在定量降水檢驗的表現優於一次同化,但若把二次同化的時間推延至一次同化預報後兩小時,其預報將有更明顯的改善。

English Abstract

An important advantage of radar observations is their high temporal and spatial resolution data, which are suitable for heavy weather surveillance. The purpose of this study is to improve previous studies, which are to improve the initial field and hence the quantitative precipitation forecast (QPF) of the numerial model by using multiple-Doppler radar observation data. The assimilation technique includes three components: multiple-Doppler radar wind synthesis, thermodynamic retrieval and moisture adjustment. A case during IOP8, Southwest Monsoon Experiment (SoWMEX)2008 is selected in this study. Some problems have not solves in previous studies: such as the pressure field has not been fully assimilated into the model, the boundary of forecast field produces wrong reflectivity, and overestimate of the rainfall. In this study we replace the method of the retrieval pressure embedding the model, and use a newly designed moisture adjustment method. The results show improvement in reflectivity structure and the accuracy precipitation of forecast. In the microphysics schemes test, WSM6 is a reasonable choice. In assimilation test, the model QPF can be significantly improved after assimilating the radar data. In with or without sounding test, it is feasible to use the model outputs to replace the role played by a sounding for estimating the unknown constant at each altitude. In second assimilation study, it can improve the retrieval atmospheric state variables, convection position and QPF in first assimilation. None of the fraction show which strategy is better. These two experiments produce comparable forecast, the model QPF may be more effective when the second DA is postponed until two hours.

Topic Category 基礎與應用科學 > 大氣科學
地球科學學院 > 大氣物理研究所
Reference
  1. 尤心瑜和廖宇慶,2011:使用都卜勒氣象雷達資料改善模式定量降雨預報之可行 
    連結:
  2. 陳尉豪和廖宇慶,2012:同化多都卜勒雷達資料以改善模式定量降水預報-2008
    連結:
  3. 鐘高陞、廖宇慶、陳台琦,2002:由都卜勒風場反演三維熱動力場的可行性研究
    連結:
  4. 黃沛瑜,2012:使用多部都卜勒/偏極化雷達分析凡那比颱風(2010)的眼牆重建
    連結:
  5. 蔡宜君,2012:使用偏極化/多都卜勒雷達資料研究莫拉克颱風(2009)地形降雨特
    連結:
  6. Anthes, R. A., 1983: Regional models of the atmosphere in middle
    連結:
  7.   latitudes. Mon. Wea. Rev., 111, 1306–1330.
    連結:
  8.   Forecasting of a Midlatitude Convective Storm by the Assimilation of
    連結:
  9.   for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic
    連結:
  10.   during the Sydney 2000 forecast demonstration project. Wea.
    連結:
  11.   Forecasting, 19, 151–167.
    連結:
  12. Mon. Wea. Rev., 106, 587–606.
    連結:
  13.   with WSR-88D level-II data for the prediction of Fort Worth tornadic
    連結:
  14.   Mon. Weather Rev., 134, 699–721.
    連結:
  15. of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
    連結:
  16. Characteristics of a subtropical squall line determined from TAMEX
    連結:
  17. three-dimensional space. J. Atmos. Oceanic Technol., 18, 577–590.
    連結:
  18.   observations, Mon. Wea. Rev., 142, 4017–4035.
    連結:
  19. _____, T.-C. Chen Wang, and K. S. Chung, 2003: A three-dimensional
    連結:
  20. _____, Y.-J. Chang., 2009: A variational multiple–Doppler radar
    連結:
  21. Rogers R. R., and M.K. Yau,1989:A short course in cloud physics, Pergamon,
    連結:
  22.   radar data using the equations of motion and the thermodynamic
    連結:
  23.   equation. Mon. Wea. Rev., 113, 2142–2157.
    連結:
  24. Schaefer, J. T., 1990: The critical success index as an indicator of
    連結:
  25.   retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 1265–
    連結:
  26. Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar
    連結:
  27.   observations with an ensemble Kalman filter. Mon. Wea. Rev., 131,
    連結:
  28. _____, and _____, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55,835–852.
    連結:
  29. Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011:
    連結:
  30. Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler
    連結:
  31. Mon. Wea. Rev., 133, 1789–1807.
    連結:
  32.   single-Doppler observations of a supercell thunderstorm. Part II:
    連結:
  33.   rainfall case. J. Appl. Meteor., 44, 768–788.
    連結:
  34.   (2003), The Advanced Regional Prediction System (ARPS), storm-scale
    連結:
  35.   numerical weather prediction and data assimilation, Meteorol. Atmos.
    連結:
  36.   性研究-以模擬資料測試之實驗結果。大氣科學,第39 期,1–24。
  37.   SoWMEX IOP8 個案分析。大氣科學,第40 期,323-348。
  38.   -以台灣地區颮線個案為例。大氣科學,第30 期,313–330。
  39. 邱健倫,2013:使用氣象雷達改善對流尺度定量降水預報研究 – 理想和真實個
  40.   案之分析結果。國立中央大學大氣物理所碩士論文,1-82。
  41.   過程。國立中央大學大氣物理研究所碩士論文,1-90。
  42.   性。國立中央大學大氣物理研究所碩士論文,1-83。
  43. 鄧仁星,2000:RASTA(Radar Analysis System for Taiwan Area)使用說明書。
  44. Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time
  45.   series observation. NOAA Tech. Memo. Erl Nssl-62, 60pp.
  46. Chung, K. S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-Term
  47.   Single–Doppler Radar Observations. Mon. Wea. Rev., 137, 4115–4135.
  48. Crook, N. A., 1996: The sensitivity of moist convection forced by boundary
  49.   layer processes to low-level thermodynamic fields. Mon. Wea. Rev.,   
  50.   124,1767–1785.
  51. _____, and J. Sun, 2002: Assimilating radar, surface and profiler data  
  52.   Technol., 19, 888–898.
  53. _____, and _____, 2004: Analysis and forecasting of the low-level wind
  54. Gal-Chen, T., 1978: A method for the initialization of the anelastic
  55. equations: Implications for matching models with observations.
  56. Hu, M., M. Xue, and K. Brewster (2006a), 3DVAR and cloud analysis with
  57.   WSR-88D level-II data for the prediction of Fort Worth tornadic  
  58.   thunderstorms.Part I: Cloud analysis and its impact, Mon. Weather
  59.   Rev., 134,675–698.
  60. Hu, M., M. Xue, J. Gao, and K. Brewster (2006b), 3DVAR and cloud analysis
  61.   thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR,
  62. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization
  63. Lin, Y.-J., H. Shen, T.-C. C. Wang, Z-S. Deng, and R. W. Pasken, 1990:
  64. dual-Doppler data. Part II: Dynamic and thermodynamic structures and
  65. momentum budgets. J. Atmos. Sci., 47, 2382–2399.
  66. Liou, Y.-C., 2001: The derivation of absolute potential temperature
  67. perturbations and pressure gradients from wind measurements in
  68. Liou, Y.-C., J.-L. Chiou, W.-H. Chen, H.-Y. Yu, 2014: Improving the model
  69.   convective storm quantitative precipitation nowcasting by
  70.   assimilating state variables retrieved from multiple-Doppler radar
  71.   Variational approach for deriving the thermodynamic structure using
  72.   Doppler wind observations—An application to a subtropical squall
  73.   line. J. Appl.Meteor., 42, 1443–1454.
  74.   three-dimensional wind synthesis method and its impacts on
  75.   thermodynamic retrieval. Mon. Wea. Rev., 137, 3992–4010.
  76.   Oxford, England, 293pp.
  77. Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler
  78. _____, 1988: The West African squall line observed on 23 June 1981 during
  79.   COPT 81: Kinematics and thermodynamics of the convective region. J.   
  80.   Atmos.Sci., 45, 406–426.
  81. _____, and J. Sun, 1990: Single-Doppler observations of a West African
  82.   squall line on 27–28 May 1981 during COPT 81: Kinematics,
  83.   thermodynamics and water budget. Mon. Wea. Rev., 118, 1826–1854.
  84.   warning skill. Wea. Forecasting, 5, 570-575.
  85. Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity
  86.   retrievals with Phoenix II data: Clear air and microburst wind
  87.   1287.
  88.   1663–1677.
  89. Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from
  90.   Doppler radar observations using a cloud model and its adjoint.
  91. Part I: Model development and simulated data experiments. J. Atmos.
  92. Sci., 54,1642–1661.
  93. _____, and _____, 2001: Real-time low-level wind and temperature analysis
  94. using single WSR-88D data. Wea. Forecasting, 16, 117–132.
  95. Precipitation Forecast using Doppler Radar Data, a Cloud Model with
  96. Adjoint, and the Weather Research and Forecasting Model–Real Case
  97. Studies during SoWMEX in Taiwan. Wea. Forecasting (Accepted)
  98. radar data with a compressible nonhydrostatic model: OSS experiments.
  99. Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002a: Retrieval of
  100. model initial fields from single-Doppler observations of a supercell
  101. thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea.
  102. Rev., 130, 433–453.
  103. _____, _____, and _____, 2002b: Retrieval of model initial fields from
  104.   Thermodynamic retrieval and numerical prediction. Mon. Wea.
  105.   Rev., 130, 454–476.
  106. Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker,
  107.   2005: Assimilation of Doppler radar observations with a regional   
  108.   3DVAR System: Impact of Doppler velocities on forecasts of a heavy
  109. Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier
  110.   Phys., 82, 139–170.
Times Cited
  1. 邵彥銘(2015)。利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析。中央大學大氣物理研究所學位論文。2015。1-95。