Title

雙重功能層柱改質黏土之製備與其吸持特性之研究

Translated Titles

Preparation and sorption properties of dual functions modified clay

Authors

陳誼庭

Key Words

改質黏土 ; BTEX ; 層間距 ; 分佈係數 ; modified clay ; BTEX ; basal spacing ; partition coefficient

PublicationName

中央大學環境工程研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

李俊福

Content Language

繁體中文

Chinese Abstract

自然環境下,污染物通常為無機及有機物同時存在。一般土壤攜帶負電且對金屬離子具有高親和力,對於有機污染物則礙於有機質含量及土壤水分含量導致吸持性不顯著。傳統土壤改質劑雖可增加土壤有機質含量且提高對有機污染物之吸持能力,但是,對金屬離子並不具親和力。 本研究選用五種分別含有不同官能基與不同碳鏈之改質劑,利用陽離子交換法進行人造黏土改質,藉由改質劑的特殊構造及官能基,使得改質土壤可同時吸附/吸持無機與有機污染物。由實驗結果可以發現,改質後的土壤藉由特性分析以了解改質前後之差異,X 光繞射儀的分析可以得知層間距離從15 Å增加至18~53Å,觀察出層間距離的增加與改質劑之碳鏈長度長短及添加量有極大的相關性。利用傅立葉紅外線光譜儀得知,經改質後的黏土表面較未改質者增加烷基碳鏈、羧機等官能基之特徵波峰,且利用重鉻酸鉀迴流法檢測其有機碳含量,證明已成功將黏土改質成功。土壤以有機相分佈之方式吸持BTEX,而改質後黏土提供良好的分佈介質,由吸持結果可觀察出改質劑的結構與疏水性分佈環境會影響BTEX的吸持,且分佈常數(Kd)與有機碳含量有明顯的相關性存在。由於改質黏土經由離子交換法鍵結於土壤表面,使得部分吸附位置被占據且改質劑提供的官能基量不多,造成吸附量較未改質時低,但仍達成本研究之目的,製備出得以同時吸附重金屬及有機污染物(BTEX)的改質黏土。

English Abstract

In general, soil posseses negatively charged and having a high affinity for metal ions only. Soil has no capacity of partitioning for nonionic organic pollutants because the nonionic organic pollutants are carried out with partitioning by soil organic matter. If the soil does not contain a high content of organic matters, the partition capacity of soil would be low. However, the inorganic and organic pollutants usually coexist presenting time in the environment. In general, the traditional methods of modification of soils usually improve the content of soil organic matter but often loss the capacity of adsorption for ionic pollutants. In this study, we have synthesized modified-montmorillonites using Na-montmorillonites and surfactants with different alkyl chain number, chain length and functional groups. Such modification, makes Na-montmorillonites possible for simultaneous adsorption / sorption of inorganic and organic pollutants. The most widely used technique for studying intercalated materials in the silicate galleries is X-ray diffraction (XRD), which provides information on the layered structure and the basal spacing. The results showed that for the modified clay the basal spacing increased from 15 to ~ 18-53Å, and the interlamellar space is defendent on the carbon chains of the modifiers and also its dosage. Nitrogen adsorption-desorption device can confirm the amount of modifier resulted in an average pore size than the unmodified sample. Fourier infrared spectroscopy also informed that the modified clay surface contains the specific functional groups (e.g. alkyl and Carboxyl functional) and modification relatively changed upon increasing the alkyl carbon chain of modifiers. Detected organic carbon content by dichromate reflux method have proven the successful modification. Sorption of BTEX by modified soil indiacated that distribution of BTEX and water solubility of organic adsorbate is disproportional to its partition coefficient. Also, the distribution and behavior of BTEX by hydrophobic modification of soil is affected by the environment conditions and structure. The organic modifiers improved the distribution of nonionic organic compounds better is shown in this study. Since, the modified clay is bonded on surface of soil by ion exchange, parts of adsorption sites are occupied and the modified agent can not provide a lot of functional groups and then cause for less adsorption capacity than pristine clay. But, the purpose to prepare the modified clay that can absorb both heavy metal and BTEX at the same time has been obtained in this study.

Topic Category 工學院 > 環境工程研究所
工程學 > 土木與建築工程
Reference
  1. 6. 莊雅婷,“具特殊官能基之土壤對水溶液中有機與無機污染物吸持行為之研究”,碩士論文,國立中央大學環境工程研究所,(2001)
    連結:
  2. 9. Chiou, C. T. and Kile, D. E., “Water Solubility Enhancement of DDT and Trichlorobenzene by some surfactant Below and Above the Critical Micelle Concentration”, Environ. Sci. & Technol., Vol. 23, No. 7, p.832-838, (1989)
    連結:
  3. 14. Nevskaia, D. M.; Ruiz, A. G. and Gonzalez, J. D., “Adsorption of Polyoxyethylenic Surfactants on Quartz, Kaolin, and Dolomite: A Correlation between Surfactant Structure and Soil Surface Nature”, Colloid and Interface Sci., Vol. 181, p.571-580, (1996)
    連結:
  4. 15. Liu, Z.; Laha, S.; and Luthy, R. G., “Surfactant Solubilization of Polycyclic Aromatic Hydrocarbon Compounds in Soil-Water Suspensions”, Water Science and Technology, Vol. 29, No. 4, p.903-913, (1995)
    連結:
  5. 16. Q. Xu, E. D. Snell, “Adsorption Behavior of Alkylarylethoxylated Alcohols on Silica”, Journal of Colloid and Interface Science, Vol. 144, No. 1, p.165-173, (1991)
    連結:
  6. 18. Lambert, SM, “Functional Relationship Between Sorption in Soil and Chemical Structure”, J. Agric. Food Chem., 15, 572-576, (1989)
    連結:
  7. 19. Lambert, SM; Porter, PE and Schieferstein, RH, “Movement and Sorption of Chemicals Applied to the Soil”, Weed, 13, 185-190, (1965)
    連結:
  8. 20. Chiou, CT;Louis, JP and Virgil, HF, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, 206, 831-832, (1979)
    連結:
  9. 21. 林芳伃,“多重功能改質黏土之吸持與催化特性研究”,碩士論文,國立中央大學環境工程研究所,(2012)
    連結:
  10. 23. Chiou, C.T.; Louis, J.P.; and Virgil, H.F., “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science,206, 831-832, (1979)
    連結:
  11. 24. Chiou, C.T.; Porter, P.E.; and Schmedding, D.W., “Partition Equilibriaof Nonionic Organic Compounds between Soil Organic Matter and Water”, Environ. Sci. Technol., 17, 227-231, (1983)
    連結:
  12. 25. Means, J.C.; Wood, S.G.; Hassett, J.J.; and Banwart. W.L., “Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils”, Environ. Sci. Technol., 14, 1524-1528, (1980)
    連結:
  13. 26. Grathwohl, P., “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on Koc Correlations”, Environ. Sci. Technol, 24, 1687-1693, (1990)
    連結:
  14. 27. Murphy, E.M.; Zachara, J.M.; and Smith, S.C., “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds”, Environ. Sci. Technol., 24, 1507-1516, (1990)
    連結:
  15. 28. Xing, B.; McGil, B.; and Dudas, M.J., “Sorption of α-Naphthol onto Organic Sorbents Varying in Polarity and Aromaticity”, Chemosphere, 28, 145-153, (1994)
    連結:
  16. 29. Ruthven, D. M., “Principles of Adsorption and Adsorption Process”, John Wiley & Sons (1984)
    連結:
  17. 32. 楊逸禎,“土壤無機相對有機污染物吸附特性之研究”, 碩士論文,國立中央大學環境工程研究所,(2007)
    連結:
  18. 33. Wang, X. S.; Qin, Y., “Equilibrium sorption isotherms for of Cu2+ on rice bran”, Process Biochemistry, 40, pp.677-680 (2005)
    連結:
  19. 34. Gulnaziya Issabayeva, Mohamed Kheireddine Aroua, Nik Meriam Nik Sulaiman, “Removal of lead from aqueous solutions on palm shell activated carbon”, Bioresource Technology, 97, pp.2350-2355 (2006)
    連結:
  20. 35. Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; Nabais J. M. V. and Prates Ramalho J. P., “Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons”, Carbon, 35, pp.403-410 (1997)
    連結:
  21. 36. Buerger M. J., Elementary Crystallography, John Wiley & Sons, New York, (1963)
    連結:
  22. 37. Lagaly, G., “Interaction of alkylamines with different types of layered compounds”, Solid State Ionics, 22(1), 43-51, (1986)
    連結:
  23. 38. Li, Y.Q.; Ishida, H., “Concentration-dependent conformation of alkyl tail in the nanoconfined space: hexadecylamine in the silicate galleries”, Langmuir, 19, pp. 2479–2484, (2003)
    連結:
  24. 39. He, H.P.; Zhou, Q.; Martens, W.N.; Kloprogge, T.J.; Yuan, P.; Xi, Y.F.; Zhu, J.X.; Frost, R.L., “Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics”, Clays Clay Miner., 54, pp. 689–696, (2006)
    連結:
  25. 40. He, H.; Ma, Y.; Zhu, J.; Yuan, P.; Qing, Y., “Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration”, Applied Clay Science, 48 (1–2), 67-72, (2010)
    連結:
  26. 41. He, H.P.; Ray, F.L.; Zhu, J.X., “Infrared study of HDTMA+ intercalated montmorillonite”, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 60, (12): 2853-2859, (2004)
    連結:
  27. 42. Silva, S.M.L. and C.R.C. Braga, “Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites”, Federal University of Campina Grande, Department of Materials Engineering.
    連結:
  28. 43. Barman, S., Venkataraman, N.V., Vasudevan, S., Seshadri, R., “Phase transitions in the anchored organic bilayers of long-chain alkylammonium lead iodides (CnH2n+1NH3)2PbI4; n = 12, 16, 18”, Journal of Physical Chemistry B, 107 (8), pp. 1875-1883, (2003)
    連結:
  29. 44. Ma, Y.; Zhu, J.; He, H.; Yuan, P.; Shen, W.; Liu, D., “Infrared investigation of organo-montmorillonites prepared from different surfactants”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (2), 122-129, (2010)
    連結:
  30. 45. Adballah, W.; Yilmazer, U.; “Novel thermally stable organo-montmorillonites from phosphonium and imidazolium surfactants”, Thermochimica Acta, 525 (1–2), 129-140, (2011)
    連結:
  31. 46. Ahmed, A. A.; Thiele-Bruhn, S.; Aziz, S. G.; Hilal, R. H.; Elroby, S. A.; Al-Youbi, A. O.; Leinweber, P.; Kühn, O., “Interaction of polar and nonpolar organic pollutants with soil organic matter: Sorption experiments and molecular dynamics simulation”, Science of The Total Environment, 508 (0), 276-287, (2015)
    連結:
  32. 47. Chiou, C. T.; Mcgroddy, S. E.; Kile, D. E., “Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments”, Environmental Science and Technology, 32, 264–269, (1998)
    連結:
  33. 48. Lee, J. F.; Chang Y. T.; Chao H. P.; Huang H. C.; Hsu M. H., “Organic compound distribution between nonionic surfactant solution and natural solids: Applicability of a solution property parameter”, Journal of Hazardous Materials, 129(1–3), p. 282-289, (2006)
    連結:
  34. 49. Zhu, J., Cozzolino, V., Pigna, M., Huang, Q., Caporale, A. G. and Violante, A., “Sorption of Cu, Pb and Cr on Na-montmorillonite: Competition and effect of major elements”, Chemosphere, 84(4): 484-489. (2011)
    連結:
  35. 50. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yuxel, N., “Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L effect of physicochemical environment”, J. Hazard. Mater. 126, 96-104, (2005)
    連結:
  36. 51. Perić, J.; Trgo, M.; Vukojević Medvidović, N., “Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms”, Water Research 38(7): 1893-1899, (2004)
    連結:
  37. 52. Putra, W. P.; Kamari, A.; Yusoff, S. N. M.; Ishak, C. F.; Mohamed, A.; Hashim, N; Isa, I. M., “Biosorption of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Waste Materials: Adsorption and Characterisation Studies”, Journal of Encapsulation and Adsorption Sciences, 4, 25-35, (2014)
    連結:
  38. 53. Sulaymon, A. H.; Abid, B. A.; Al-Najar, J. A, “Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers”, Chemical Engineering Journal, 155(3), 647-653, (2009)
    連結:
  39. 1. Usuki A.; Kojima Y.; Kawasumi M.; Fukushima Y.; Okada A.; Kurauchi T., “Synthesis of nylon-6-clay hybrid”, J Mater Res, 8, pp. 1179–1184, (1993)
  40. 2. 張仁福,“土壤污染防治學”,高雄復文,初版,(1998)
  41. 3. B. M. Braja 原著,胡德欽譯,“土壤力學”,高立,初版,(1997)
  42. 4. 洪崑煌譯,“土壤化學”,國立編譯館,初版,(1996)
  43. 5. Ray R. Weil and Nyle C. Brady, ”The Nature and Properties of Soils”, 4th Ed, Pearson Prentice Hall, (2007)
  44. 7. 王一雄,“土壤環境污染與農藥”,文海環境科學叢書,初版,(1999)
  45. 8. McBride, M. B., “Environmental Chemistry of Soils”, Oxford University Press, Inc., (1994)
  46. 10. 刈米孝夫原著,王鳳英編譯,“界面活性劑的原理與應用”,高立圖書有限公司,五版,(1998)
  47. 11. 趙承琛,“工業升級之特用化學品-界面活性劑”,復文書局,初版,(1993)
  48. 12. L. I. Osipow原著,高文弘,周賢孟譯著“界面化學”,黎明,四版,(1998)
  49. 13. 廖明隆編譯“界面化學與界面活性劑”,文源,再版,(1994)
  50. 17. 陳百合,“不同土壤組成對界面活性劑吸附機制之研究”,碩士論文,中央大學環境工程研究所,(1997)
  51. 22. Chiou, C.T., “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N.J. : Wiley-Interscience, (2002)
  52. 30. Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am.Chem.Soc., 62, pp.1723 (1940)
  53. 31. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1,Colloid and Surface Chemistry, Pure Appl. Chem. 31, 578, (1972)