Title

砂岩摩擦降伏後之潛變特性

Translated Titles

Creep properties of sandstone after frictional yielding

Authors

彭聖祐

Key Words

摩擦試驗 ; 潛變破壞 ; 破壞時間 ; 加速度 ; 音波

PublicationName

中央大學土木工程學系學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

張惠文

Content Language

繁體中文

Chinese Abstract

本研究以微音器與加速度計量測砂岩摩擦試驗時之音波與振波訊號,探討砂岩試體降伏後再施加不同摩擦應力使其產生潛變破壞所耗之時間。試驗中所測得之音波與加速度訊號可協助判定潛變變形或破壞發生之時間點。由研究結果顯示,砂岩潛變破壞,隨降伏後應力之增高,而破壞時間逐漸縮短;隨降伏後的應力之減小,破壞時間逐漸增長。此結果說明了降伏後的應力增加會加快岩石層面的潛變破壞。另外,降伏後的應力為降伏至破壞間應力差的50%以下,砂岩試體並無破壞情形,顯示破壞時間長,且無立即危險,當降伏後的應力達50%以上,實驗結果顯示試體有立即破壞之危險。由量測結果可知降伏後的應力達50%以上之情況,破壞時間介於0~36秒,降伏後的應力為50%以下之情況,破壞時間超過兩天,如輔以加速度與音波之警訊,可作為預警危急程度之判定,將可降低災害的損失。

English Abstract

This research performed a series of frictional tests of sandstone specimens. In these tests, various frictional stresses were applied to study the required time for creep failure, and measuring sound wave and vibration wave signals to distinguish creep deformation and failure. According to the experimental results, for a post-yielding stress closer to the failure frictional strength, the creep failure time will be shorter. And for a post-yielding stress closer to the yielding stress, the creep will last for a very long period or it may not fail. These experimental results indicate that applying a stress after yielding will accelerate sliding deformation of sandstone and causes failure. Besides, when applying a post-yielding stress which is less than 50% of the range between yielding and failure, sandstone specimen will be under a safe state. However, if the post-yielding stress is larger than 50%, the failure of sandstone specimen will happen rapidly. When friction stress is more than 50% of post-yielding stress, the failure time is ranged between 0 and 36 seconds. However, failure will last more than two days for the post-yielding stress less than 50%. With the assistance of sound and acceleration signals, the combination of these information measured from rock slope may be used as a tool of early warning.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
Reference
  1. 2. 王奕閔,「以行為模型建立二階三角積分調變器之非理想現象的研究」,碩士論文,國立中央大學電機工程研究所,中壢 (2006)。
    連結:
  2. 3. 王偉輝、劉德源、鄭傑元、盧威宇、許錦海、林意勝、劉家誌、杜堅瑋、郭鍠輝、莊雅雯,「高速鐵路噪音振動之研究」,行政院環保署委託計畫,中華民國振動與噪音工程學會辦理 (2003)。
    連結:
  3. 10. 李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
    連結:
  4. 11. 李豐博、黃安斌、饒正、蔡東霖、李瑞庭,「全光纖式邊坡穩定監測系統整合與現地應用測試」,交通部運輸研究所港灣技術研究中心,台中(2008)。
    連結:
  5. 13. 張惠文、陳柏翰、李嶸泰、胡天騏,「礫石受剪之音波與振及其防災應用」,災害防救科技與管理學刊,第二卷,第二期,第55-77頁 (2013)。
    連結:
  6. 16. 黃清哲、葉智惠、尹孝元、王晉倫,「地聲探測器應用於土石流監測之實驗」,中華水土保持學報,第三十六卷,第一期,第39-53頁 (2005)。
    連結:
  7. 17. 黃清哲、孫坤池、陳潮億、尹孝元,「不同型態土石流地聲特性之實驗研究」,中華水土保持學報,第三十八卷,第四期,第417-430頁 (2007)。
    連結:
  8. 19. 胡天騏,「部分飽和砂岩受剪滑動與破壞之波動特性」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。
    連結:
  9. 21. 劉建忠,「應用HHT方法在偵測建築結構樓層損傷程度之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2012)。
    連結:
  10. 30. Barton, N.R. and Choubey, V., “The shear strength of rock joints in theory and practice,” Rock Mechanics, Vol. 10, No. 1, pp. 1-54 (1977).
    連結:
  11. 31. Bieniawski, Z.T., “Mechanism of brittle fracture of rock,” Int.J, Rock Mechanics, Min, Sci, Vol. 4, No. 4, pp. 407-423 (1967).
    連結:
  12. 33. Bray, D.E., and McBride, D., “Acoustic Emission Technology,” Nondestructive Testing Techniques, New York, pp. 345-377, John Wiley & Sons Inc. (1992).
    連結:
  13. 34. Goodman, R.E., “Subaudible noise during compression of rock,” Geological Society of America, Bulletin, Vol. 74, No. 4, pp. 90-487 (1963).
    連結:
  14. 35. Gutowski, T.G., and Dym, C.L., “Propagation of Ground Vibration: A Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
    連結:
  15. 36. Hardy, H.R., “Application of acoustic techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83 (1972).
    連結:
  16. 40. Itakura Y., Inaba, H., Sawada, T., “A debris-flow monitoring devices and methods bibliography,” Natural Hazards and Earth System Sciences, Vol. 5, pp. 971-977 (2005).
    連結:
  17. 41. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 2, pp. 115-126 (2000).
    連結:
  18. 42. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, N.J. (1996).
    連結:
  19. 44. Koerner, R.M., McCabe, W.M., and Lord, A.E., “Overview of acoustic emission monitoring of rock structures,” Rock Mechanics, Vol. 14, pp. 27-35 (1981).
    連結:
  20. 45. Matthews, J.R., and Hay, D.R., “Acoustic Emission,” Nondestructive Testing Monographs and Tracts, Vol. 2, pp. 1-14 (1983).
    連結:
  21. 49. Ranjith, P.G., Fourar, M., Pong, S.F., Chian, W., and Haque, A., “Characterisation of fractured rocks under uniaxial loading states,” Int.J, Rock Mech, Min, Sci, Vol. 41, pp. 361-366 (2004).
    連結:
  22. 50. Ranjith, P.G., Jasinge, D., Song, J.Y., and Choi S.K., “A study of the effect of displacement rate and moisture content on the mechanical properties of concrete:Use of acoustic emission,” Mechanics of Materials, Vol. 40, pp. 453-569 (2008).
    連結:
  23. 52. Ronnie, K.M., and McIntire,P., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
    連結:
  24. 55. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A., “Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Edition, Vol. 5, pp. 11-44 (1987).
    連結:
  25. 56. Byerlee, J.D., “Friction of Rocks,” Pageoph, Vol. 116, pp. 615-626 (1978).
    連結:
  26. 58. Dixon, N., Hill, R., and Kavanagh, J., “Acoustic emission monitoring of slope instability:Development of an active waveguide system,” Geotechnical Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
    連結:
  27. 59. Goodman, R.E., Introduction to rock mechanics, John Wiley & Sons, University of Michigan (1989).
    連結:
  28. 1. 王柏村,「振動知多少」,科學發展,第四百一十三期,第46-52頁 (2007)。
  29. 4. 田坤國、李俊億、馬經文、黃文駿,「南部軟岩區國道邊坡穩定監測與預警研究(III)」,南部軟岩區邊坡穩定工法研究成果發表會論文集,第71~84頁 (2003)。
  30. 5. 行政院環保署,噪音原理防制材料簡介手冊 (2010)。
  31. 6. 行政院農業委員會水土保持局,梨山地區地層滑動整治計畫 (2002)。
  32. 7. 交通部中央氣象局,地震百問,台北 (2003)。
  33. 8. 吳卓岡,「台北盆地地盤放大特性之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2001)。
  34. 9. 吳銘德、周丹,「探測岩石破裂的聲音以確定人工裂縫的方法」,國外測井技術,第八卷,第六期,第19-22頁 (1993)。
  35. 12. 施國欽,岩石力學-大地工程學(四),文笙書局,台北 (2004)。
  36. 14. 陳俊誠,「以LabVIEW軟體開發虛擬頻譜分析儀」,碩士論文,國立中央大學機械工程學系,中壢 (2009)。
  37. 15. 陳柏翰,「礫石受剪時之音波與振波特性」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
  38. 18. 楊嘉瑜,「部分飽和砂土受剪波動及剪力強度特性的研究」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
  39. 20. 廖洪鈞、廖瑞堂,「坡地社區開發安全監測手冊」,內政部營建署營建自動化專業技術報告 (1999)。
  40. 22. 謝榮宗,「雷射自動監測預警系統之研究」,第十一屆大地工程學術研討會,台北,第G25-1~G25-10頁 (2005)。
  41. 23. 張嘉倫,「大份田地滑地降雨與地表移動關係之研究」,碩士論文,國立中興大學水土保持學系,台中 (2001)。
  42. 24. 蘇德勝,噪音原理及控制,臺隆書店,台北 (2003)。
  43. 25. 鹽田正純,公害振動的預測手冊,景上書局,日本 (1985)。
  44. 26. 肖樹芳、楊淑碧,岩體力學,地質出版社,北京 (1987)。
  45. 27. 藤原明敏,「地すベリ調查と解析」,理工圖書株式會社,P1~9 (1989)。
  46. 28. 日本高速道路調查會,「地すべり危險地におけるとろ動態觀測施工に關する研究(その3)報告書」,日本 (1988)。
  47. 29. 山口真一、中村三郎,地すべり山崩れ–実態と对策,大明堂,日本,第130-133頁 (1974)。
  48. 32. Bieniawski, Z.T., Franklin, J.A., Bernede, M.J., Duffaut, P., Rummel, F., Horibe, T., Broch, E., Rodrugues, E., Van Heerden, W.L., Vogler, U.W., Hansagi, I., Szlavin, J., Brady, B.T., Deere, D.U., Hawkes, I., and Milovanovic, D., “Suggested method for determining the uniaxial compressive strength and deformability of rock materials,” International society for rock mechanics, Vol. 16, No. 2, pp. 135-140 (1979).
  49. 37. Itakura, Y., Taniguchi, S., Miyamoto, K., and Shimokawa, E., “Acoustic sensor for detecting the occurrence of debris flows,” Variability in Stream Erosion and Sediment Transport (1994).
  50. 38. Itakura, Y., Kamei, N., Takahama, J.I., and Nowa, Y., “Real time estimation of discharge of debris flow by an acoustic sensor,” 14th IMEKO World Congress, New Measurements-Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131 (1997).
  51. 39. Itakura, Y., Kamei, N., Takahama, J.I., and Nowa, Y., “Acoustic detection sensor of Debris flow,” The First Internation Conference on Debris-Flow Hazards Mitigation:Mechanics, Prediction, and , Finland, Vol. XA, pp. 127-131 (1997).
  52. 43. Koerner, R.M., McCabe, W.M., and Lord, A.E., “Acoustic emission behavior and monitoring of soils,” Acoustic Emissions in Geotechnical Engineering Practices, ASTM STP 750, pp. 93-141 (1981).
  53. 46. Miller, R.K., and P. McIntire, “Nondestructive Testing Handbook: Vol.5 Acoustic Emission Testing,” 2nd Edition, American Society for Nondestructive Testing, pp. 603 (1987).
  54. 47. Mogi, K., “Magnitude frequency relation of microfracturing in rock and its relation to earthquakes,” Bull Earthquake Res Inst, Vol. 40, pp. 831-853 (1964).
  55. 48. Okuda, S., Okunishi, K., and Suwa, H., “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,” Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130 (1980).
  56. 51. Richart, F.E., Woods, R.D., and Hall, J.R., “Vibrations of Soils and Foundations,” Prentice-Hall, Englewood Cliffs, N.J. (1970).
  57. 53. Kojo, A., “Effect of strain rate on the shear strength of questa rock ile materials,” Master of Science in Mineral Engineering (2010).
  58. 54. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers (1991).
  59. 57. Moradian, Z.A., Ballivy, G., Rivard, P., Gravel, C., Rousseau, B., “Evaluating damage during shear tests of rock joints using acoustic emissions,” International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 590–598 (2010).