Title

利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究

Translated Titles

The study of thermoelectric and mechanical properties for the nano-/micro-grain Zn4Sb3 fabricated by melt spinning and vacuum hot pressing

Authors

陳漢文

Key Words

Zn4Sb3 ; 真空熱壓法 ; ZT值

PublicationName

中央大學材料科學與工程研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

鄭憲清

Content Language

繁體中文

Chinese Abstract

β-Zn4Sb3為熱電性能表現最佳的中溫熱電材料,為提升其熱電優值,本研究中混和具有奈米晶與微米晶結構的Zn4Sb3粉末,藉由增加塊材內部晶界面來降低塊材導熱度,進而提高熱電轉換效率。首先將急冷旋鑄法製備具有奈米晶的Zn4Sb3薄帶研磨成粉末後,再與熔融法製備的微米晶粉末互相混合,其Zn4Sb3粉末混合比例以奈米晶/微米晶:95/5 vol.%、90/10 vol.%、85/15 vol.%與80/20 vol.%為基準預製混和粉末,再利用真空熱壓法燒結成相對密度約為99.5%以上之Zn4Sb3塊材,使其具有高的破裂韌性可達1.46 MPa.m1/2。藉由奈米晶的晶粒細化來增加Zn4Sb3材料Seebeck係數與降低熱傳導率,同時利用添加微米晶的來增加載子的移動進而提升電導率,由於奈米/微米複合結構不但降低了材料的晶格熱導率並同時提升了電導率,進而提高整體之ZT值。研究結果顯示80 vol.%奈米晶/20 vol.%微米晶複合結構熱壓塊材在325℃表現出最高ZT值為1.22。

English Abstract

The β-Zn4Sb3 thermoelectric(TE) material β-Zn4Sb3 has the best performance during 350~400℃. Its advantages include low cost and simple fabricate process. Some researches indicated that its ZT value can reach 1.37 at 400℃ In this study, we select two methods to fabricate nano- and micro- grained Zn4Sb3 process. One is melt spinning process (30 m/s) for Zn4Sb3 ribbon and the other one is a traditional manufacture method by using melt diffusion and quenching for bulk sample. The melt spun ribbons and melt diffused bulk material were both grinded into powders, then mix these two powders with nano/micro-grain sized powder ratio of 95/5 vol.%、90/10 vol.%、85/15 vol.% and 80/20 vol.%. Then these mixed powders were fabricated into bulk samples via vacuum hot pressing (HP) method. The fracture toughness can reach as high as 1.46 MPa.m1/2 because of its high relative density above 99.5%. We propose that with nano- and micro- grained composite structure can increase the phonon scattering and decrease the lattice thermal conductivity at the same time and so as to enhance ZT value. The results show that the optima thermoelectric property occurs at the bulk sample with nano/micro-grain grained vol.ume ratio of 80/20, the measurement of the Seebeck coefficient, electric conductivity, and thermal conductivity are 213 μV/K, 337 S/cm and 7.53 mW/cmK2 ,respectively, which presented a ZT value as high as 1.22 at 598 K.

Topic Category 工學院 > 材料科學與工程研究所
工程學 > 工程學總論
Reference
  1. 〔1〕T. Caillat, J.-P. Fleurial, A. Borshchevsky, “Preparation and thermoelectric properties of semiconducting Zn4Sb3”, Journal of Physics and Chemistry of Solids, vol. 58, pp.1119-1125, 1997.
    連結:
  2. 〔2〕Soon-Chul Ur, Philip Nash, Il-Ho Kim, “Solid-state syntheses and properties of Zn4Sb3 thermoelectric materials”, Journal of Alloys and Compounds, vol. 361, pp.84-91, 2003.
    連結:
  3. 〔3〕L.T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, “Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3”, Journal of Alloys and Compounds, vol. 358, pp.252-256, 2003.
    連結:
  4. 〔4〕Soon-Chul Ur, Philip Nash, Il-Ho Kim, “Thermoelectric properties of Zn4Sb3 directly synthesized by hot pressing”, Materials Letters, vol. 58, pp.2132-2136, 2004.
    連結:
  5. 〔6〕顏潤賢,利用急冷旋鑄及真空熱壓製備β-Zn4Sb3奈米微米晶塊材之熱電性質探討,中央大學機械工程學系碩士論文,2014。
    連結:
  6. 〔7〕Dekui Qi, Xinfeng Tang, Han Li, Yonggao Yan, And Qingjie Zhang,” Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun β-Zn4Sb3”, Journal of Electronic Materials, vol.39, 2010.
    連結:
  7. 〔8〕Pee-Yew Lee, Tzu-Chien Chen, Jing-Yi Huang, Huey-Lin Hsieh, Jason Shian-Ching Jang, “ Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing”, Journal of Alloys and Compounds, vol. 615, pp. S476-S481, 2014.
    連結:
  8. 〔9〕Z.F. Zheng, C.X Liu, Y.Y. Yan, Q. Wang, “ A review of thermoelectrics research-Recent developments and potentials for sustainable and renewable energy applications”, Renewable and Sustainable Energy Reviews, vol. 32, pp.486-503, 2014.
    連結:
  9. 〔10〕Mohamed Hamid Elsheikh, Dhafer Abdulameer Shnawah, Mohd Faizul Mohd Sabri, Suhana Binti Mohd Said, Masjuki Haji Hassan, Mohamed Bashir Ali Bashir, Mahazani Mohamed, “ A review on thermoelectric renewable energy: Principle parameters that affect their performance”, Renewable and Sustainable Energy Reviews, vol. 30, pp.337-355, 2014.
    連結:
  10. 〔12〕Fouzia Adjadj, El-djemai Belbacha, Malek Bouharkat, “Differential calorimetric analysis of the binary system Sb–Zn”, Journal of Alloys and Compounds, vol.430, pp.85-91, 2007.
    連結:
  11. 〔14〕Go Nakamoto, Keisuke Kinoshita, Makio Kurisu, “Thermal expansion anomalies at high temperatures near stoichiometric Zn4Sb3 composition”, Journal of Alloys and Compounds, vol.436, pp.65-68, 2007.
    連結:
  12. 〔16〕Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel, Eric S. Toberer, G. Jeffrey Snyder and Johan Taftø, ” Nanostructuring in β-Zn4Sb3 with variable starting Zn compositions” , Physica Status Solidi A, vol. 208, pp.1652-1657, 2011.
    連結:
  13. 〔17〕Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel and Johan Taftø, “Nanovoids in thermoelectric β-Zn4Sb3 A possibility for nanoengineering via Zn diffusion”, Acta Materialia, vol.59, pp.5266–5275, 2011.
    連結:
  14. 〔18] Gaohua Zhu, Weishu Liu, Yucheng Lan, Giri Joshi, Hui Wang, Gang Chen, Zhicheng Ren, “The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound”, nano energy, vol.2, pp.1172-1178, 2013.
    連結:
  15. 〔19〕G. Jeffrey Snyder, Mogens Christensen, Eiji Nishibori, Thierry Caillat, and Bo Brummerstedt Iversen, “Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties”, Nature Materials, vol.3, pp.459-463, 2004.
    連結:
  16. 〔20〕Fausto Cargnoni, Eiji Nishibori, Philippe Rabiller, Luca Bertini, Jeffrey Snyder, Mogens Christensen, Carlo Gatti, and Bo Brummerstadt Iversen, “ Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide, Zn4Sb3: A Combined Maximum Entropy Method X-ray Electron Density and AbInitio Electronic Structure Study”, Chemistry-A European Jourmal, vol.10, pp.3861-3870, 2004.
    連結:
  17. 〔21〕Soon-Chul Ur, Philip Nash, Il-Ho Kim, “Mechanical alloying and thermoelectric properties of Zn4Sb3”, Journal of Materials Science,vol.38, pp.3553-3558, 2003
    連結:
  18. 〔22〕A. Wrona,K. Bilewska, J. Mazur,M. Lis, M. Staszewski, “Properties of thermoelectric Zn-Sb type material diretly synthesized by spark plasma sintering”, Journal of Alloys and Compounds, vol.616, pp.350-355, 2014.
    連結:
  19. 〔23〕G. Jeffrey Snyder and Eric S. Toberer, “Complex thermoelectric materials”, Nature Materials, vol.7, pp.105-114, 2008
    連結:
  20. 〔24〕Chinatsu Okamura, Takashi Ueda, Kazuhiro Hasezaki, “Preparation of Single Phase β-Zn4Sb3 Thermoelectric Materials by Mechanical Grinding Process”, Materials Transactions, vol.51, pp.152-155, 2010.
    連結:
  21. 〔25〕Chinatsu Okamura, Takashi Ueda, Kazuhiro Hasezaki, “Preparation of Single-Phase ZnSb Thermoelectric Materials Using a Mechanical Grinding Process”, Materials Transactions,vol.51, pp.860-862, 2010.
    連結:
  22. 〔26〕Marisol Martín-González, O. Caballero-Calero, P. Díaz-Chao, “Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field”, Renewable and Sustainable Energy Reviews, vol.24, pp.288-305, 2013.
    連結:
  23. 〔27〕Soon-Chul Ur, Philip Nash,Recardo Schwarz, “Mechanical and Thermoelectric properties of Zn4Sb3 and Zn4Sb3+Zn Directly Synthesizes Using Elemental Powders”, METALS AND MATERIALS International, vol.11, pp.435-411, 2005.
    連結:
  24. 〔5〕J.H. Ahn, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, H.W. Lee, Y.J. Shim, “Thermoelectric properties of Zn4Sb3 prepared by hot pressing”, Materials Research Bulletin, vol. 46, pp.1490-1495, 2011.
  25. 〔11〕M. Tapiero, S. Tarabichi, J.G. Gies, C. Noguet, J.P. Zielinger, M. Joucla, J.L. Loison and M. Robino, ” Preparation and characterization of Zn4Sb3”, Solar Energy Materials, vol.12, pp.257-274, 1985.
  26. 〔13〕Yurij Mozharivskyj, Alexandra O. Pecharsky, Sergey Bud’ko, and Gordon J. Miller, ” A Promising Thermoelectric Material: Zn4Sb3 or Zn6-δSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-δSb”, Chemistry of Material, vol. 16, pp.1580-1589, 2004.
  27. 〔15]H. Okamoto, “ Sb-Zn (Antimony-Zinc)”, JPEDAV, vol..29, 2008.