透過您的圖書館登入
IP:3.145.50.83
  • 學位論文

以陽極氧化鋁模板製備週期性金奈米洞陣列及其光學性質之探討

Fabrication of Au Nanohole Arrays by Anodic Aluminum Oxide Templates and Their Optical Properties

指導教授 : 陳一塵
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,金屬奈米結構由於獨特的表面電漿共振的特性,具有相當大的潛力可應用,可利用於化學、生物感測器以及新穎光學元件的應用。 本研究以陽極氧化鋁模板製備不同尺寸及厚度的金屬奈米洞陣列於玻璃基板上,相較於傳統微影製程,陽極氧化鋁模板為一低成本,並且可用於製作大尺寸奈米結構之方式。並對不同厚度和直徑的金奈米洞陣列並對其光學性質的變化進行探討和模擬做比較。當固定孔洞直徑為 211 nm,隨著厚度分別為 18、30 及 45 nm 的增加,表面電漿共振波長會從 993 nm 位移至 884 nm 以及 839 nm。而在固定厚度為 30 nm 的情況下,孔洞直徑分別為 170 nm、211 nm 及 232 nm 時,其表面電漿共振波長會從 796 nm 位移至 884 nm 和 910 nm。以上實驗的結果與模擬結果擁有相同的趨勢且誤差皆在 5 % 以下。 在折射率敏感度的量測上可發現,在固定奈米孔洞陣列直徑下隨著的厚度越薄,折射率的敏感度越靈敏,其敏感度在 18 nm 厚度的為 432 nm/RIU。而當固定厚度則是在直徑越大時,有較佳的折射率敏感度,在直徑 232 nm 時的環境折射率敏感度為 368 nm/RIU。

並列摘要


In recent years, due to the outstanding optical properties of metal nanostructures with surface plasmon resonance, there has been increasing interest in the fabrication of nanometer-sized fine structures because of their potential utilization in electronic, optical, and micromechanical devices. In this study, we fabricate periodic Au nanohole arrays on glass substrate with different size and thickness by anodic aluminum oxide templates. Compared to e-beam lithography, anodic aluminum oxide lithography is a low cost and simple method and provide a wide range of sizes. Au nanohole arrays with different diameters and thickness were prepared by vapor deposition using anodic aluminum oxide template as a mask and compared the optical properties to the results of simulation. With the increase of the diameter of the holes, the peaks affected by surface plasma resonance will have red shift phenomena. With the increase of the thickness, the peaks affected by surface plasma resonance will have blue shift phenomena. The refractive index sensitivity of Au nanohole arrays shows that it is more sensitive while increasing the diameters and decreasing the thickness of the nanohole arrays.

參考文獻


[26] H. F. Ghaemi, Tineke Thio, and D. E. Grupp, Phys. Rev. B 58, no. 11, 6779 (1998)
[45] H. J. Her, J. M. Kim and J. Kim, NEMS. 2nd IEEE International Conference, 788. (2007)
[37] Y. C. Chang, H. C. Chung, S. C. Lu and T. F. Guo, Nanotechnology, 24, 095302 (2013)
391, 667 (1998)
[5] V. A. Guzenko, J. Ziegler and A. Savouchkina, Microelectron. Eng. 88, 1972 (2011)

延伸閱讀