Title

結合鈣鈦礦型觸媒及非熱電漿技術去除氣流中酚之研究

Authors

陳岱羚

Key Words

揮發性有機物 ; 酚 ; 非熱電漿技術 ; Perovskite型觸媒 ; 單階段電漿結合觸媒系統 ; Volatile Organic Compounds ; Phenol ; Non-thermal plasma ; Perovskite-type catalyst ; Single-stage plasma catalysis

PublicationName

中央大學環境工程研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

張木彬

Content Language

繁體中文

Chinese Abstract

揮發性有機化合物之排放已受到公眾越來越多的關注,因為揮發性有機化合物之排放對人體與環境會造成不利的危害,其中酚是重要的揮發性有機化合物,它在低濃度是具有毒性的,透過吸入、攝取及眼睛或皮膚的接觸都會對人類健康造成不良的影響,此外,酚也是重要的臭味物質,因此如何有效控制其排放實刻不容緩。本研究以perovskite型觸媒結合非熱電漿技術去除氣流中揮發性有機物,藉由上述之實驗來探討電漿與催化反應間之加成效應。本研究分為兩個部份進行討論,第一部份以檸檬酸溶膠凝膠法合成perovskite型觸媒LaMnO3,藉Sr及Cu的添加來製備改質之LaMnO3觸媒,並比較LaMnO3、La0.8Sr0.2MnO3及La0.8Sr0.2Mn0.8Cu0.2O3三種觸媒之催化活性及基本特性探討。研究結果顯示La0.8Sr0.2Mn0.8Cu0.2O3於200oC即可達到100%之去除效率且在300oC對酚之礦化率已達100%,而La0.8Sr0.2MnO3及LaMnO3則需於300oC及400oC才可達完全去除之效率。從觸媒之測試結果顯示改質之La0.8Sr0.2Mn0.8Cu0.2O3對酚之去除具有最佳活性。第二部份以非熱電漿及電漿觸媒系統去除酚,結果顯示在電壓為16 kV、頻率為8 kHz及總流率為300 mL/min之條件下,非熱電漿系統對於酚之去除率為80%,填充La0.8Sr0.2Mn0.8Cu0.2O3觸媒於非熱電漿系統中酚之去除效率達100%;礦化率則從11%上至55%提升了44%;能量效率方面,單階段電漿結合觸媒系統顯著高於單獨非熱電漿系統。整體而言,單階段電漿結合觸媒系統是有效提升非熱電漿處理氣流中酚之能量效率以及礦化率。

English Abstract

Emission of volatile organic compounds (VOCs) into atmosphere has received increasing public concern due to their adverse effects on human health and the environment. Phenol (C6H5OH) is one of the most important VOCs. It is toxic even at a low concentration, causing adverse effect on human health through inhalation, ingestion, or eye and skin contact. Additionally, it is also an important odor-causing substance and how to effectively control its emission remains a big challenge. This study aims to combine perovskite catalyst and non-thermal plasma in removing phenol from gas streams. Moreover, possible synergism caused by catalysis and plasma for VOCs removal is also investigated. The study is divided into two parts for discussion, the first part is the preparation of perovskite-type catalyst by citric acid method. LaMnO3 catalyst is substituted by Sr and Cu elements, and the catalytic activity and fundamental characteristics of the three catalysts including LaMnO3, La0.8Sr0.2MnO3 and La0.8Sr0.2Mn0.8Cu0.2O3 are compared. The results show that phenol removal efficiency achieved with La0.8Sr0.2Mn0.8Cu0.2O3 is up to 100% at the operating temperature of 200oC and the mineralization rate at 300oC is up to 100%, while the phenol removal efficiencies achieved with La0.8Sr0.2MnO3 and LaMnO3 are up to 100% at the operating temperature of 300oC and 400oC, respectively. The results show that La0.8Sr0.2Mn0.8Cu0.2O3 has the best activity of removal of phenol. Non-thermal plasma and combined plasma catalysis (CPC) are also applied to remove phenol from gas streams. The results show that with the condition of applied voltage of 16 kV, frequency of 8 kHz and flow rate of 300 mL/min, the phenol removal efficiency achieved with non-thermal plasma is 80%, and the phenol removal efficiency achieved with the combined plasma catalysis by filling La0.8Sr0.2Mn0.8Cu0.2O3 is up to 100%. Mineralization rate is improved by 44% as CPC is applied. For energy efficiency, the single-stage plasma catalysis is better than non-thermal plasma alone. Overall, the combined plasma catalysis is effective in enhancing the energy efficiency and mineralization rate of removing phenol from gas streams.

Topic Category 工學院 > 環境工程研究所
工程學 > 土木與建築工程
Reference
  1. Allah, Z.A., Whitehead, J.C., Martin, P., Remediation of dichloromethane (CH2Cl2) using non-thermal, atmospheric pressure plasma generated in a packed-bed reactor. Environmental Science & Technology, 2014, 48(1), 558-565.
    連結:
  2. Aerts, R., Tu, X., Van Gaens, W., Whitehead, J. C., Bogaerts, A. Gas purification by nonthermal plasma : a case study of ethylene. Environmental Science & Technology, 2013, 47(12), 6478-6485.
    連結:
  3. Álvarez-Galván, M.C., de la Peña O'Shea, V.A., Arzamendi, G., Pawelec, B., Gandía, L.M., Fierro, J.L.G., Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Applied Catalysis B: Environmental, 2009, 92(3-4), 445-453.
    連結:
  4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., Evaluated kinetic and photochemical data for atmospheric chemistry : Volume I - gas phase reactions of OX, HOX, NOX and SOX species. Atmospheric Chemistry and Physics, 2004, 4(6), 1461-1738.
    連結:
  5. Amoore, J.E., Hautala, E., Odor as an aid to chemical safety: Odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. Journal of Applied Toxicology, 1983, 3, 272-290.
    連結:
  6. Barbero, B.P., Gamboa, J.A., Cadús, L.E., Synthesis and characterisation of La1−xCaxFeO3 perovskite - type oxide catalysts for total oxidation of volatile organic compounds. Applied Catalysis B : Environmental, 2006, 65(1-2), 21-30.
    連結:
  7. Blasin-Aubé, V., Belkouch, J., Monceaux, L., General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3 perovskite catalyst - influence of mixture. Applied Catalysis B : Environmental, 2003, 43(2), 175-186.
    連結:
  8. Buciuman, F. C., Patcas, F., Menezo, J. C., Catalytic properties of La0.8A0.2MnO3 (A = Sr, Ba, K, Cs) and LaMn0.8B0.2O3 (B = Ni, Zn, Cu) perovskites 1. Oxidation of hydrogen and propene. Applied Catalysis B : Environmental, 2002, 35, 175-183.
    連結:
  9. Byeon, J.H., Park, J.H., Jo, Y.S., Yoon, K.Y., Hwang, J., Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. Journal of Hazardous Materials, 2010, 175(1-3), 417-422.
    連結:
  10. Chang, J. S., Looy, P.C., Nagai, K., Takeshi Yoshioka, Aoki, S., Maezawa, A., Preliminary pilot plant tests of a corona discharge-electron bead hybrid combustion flue gas cleaning system. Institute of Electrical and Electronics Engineers, 1996, 32, 131-137.
    連結:
  11. Chen, H.L., Lee, H.M., Chen, S.H., Chang, M.B., Review of packed-bed plasma reactor for ozone generation and air pollution control. Industrial & Engineering Chemistry Research, 2008a, 47, 2122-2130.
    連結:
  12. Chen, H.L., Lee, H.M., Chen, S.H., Chang, M.B., Yu, S.J., Li, S.N., Removal of volatile organic compounds by single - stage and two-stage plasma catalysis systems : a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 2009, 43, 2216-2227.
    連結:
  13. Chen, H.L., Lee, H.M., Chen, S.H., Chao, Y., Chang, M.B., Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects. Applied Catalysis B : Environmental, 2008b, 85(1-2), 1-9.
    連結:
  14. Chen, J., Shen, M., Wang, X., Qi, G., Wang, J., Li, W., The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation. Applied Catalysis B : Environmental, 2013, 134-135, 251-257.
    連結:
  15. Dudnikov, V., Dudnikov, A., Radio frequency discharge with control of plasma potential distribution. Review of Scientific Instruments, 2012, 83(2), 02A720.
    連結:
  16. Haagen-Smit, A.J., Chemistry and physiology of Los Angeles smog. Industrial & Engineering Chemistry, 1952, 44(6), 1342-1346.
    連結:
  17. Hayashi, K., Yasui, H., Tanaka, M., Futamura, S., Temperature ependence of toluene decomposition behavior in the discharge - catalyst hybrid reactor. Institute of Electrical and Electronics Engineers, 2009, 45, 1553-1558.
    連結:
  18. Hosseini, S.A., Sadeghi, M.T., Alemi, A., Niaei, A., Salari, D., Kafi-Ahmadi, L., Synthesis, Characterization, and performance of LaZnxFe1-xO3 perovskite nanocatalysts for toluene combustion. Chinese Journal of Catalysis, 2010, 31(7), 747-750.
    連結:
  19. Hosseini, S.A., Salari, D., Niaei, A., Oskoui, S.A., Physical - chemical property and activity evaluation of LaB0.5Co0.5O3 (B = Cr, Mn, Cu) and LaMnxCo1−xO3 (x = 0.1, 0.25, 0.5) nano perovskites in VOC combustion. Journal of Industrial and Engineering Chemistry, 2013, 19(6), 1903-1909.
    連結:
  20. Huang, H., Liu, Y., Tang, W., Chen, Y., Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion. Catalysis Communications, 2008, 9(1), 55-59.
    連結:
  21. Huang, H., Ye, D., Leung, D.Y.C., Feng, F., Guan, X., Byproducts and pathways of toluene destruction via plasma-catalysis. Journal of Molecular Catalysis A : Chemical, 2011, 336(1-2), 87-93.
    連結:
  22. Jiang, N., Lu, N., Shang, K., Li, J., Wu, Y., Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environmental Science & Technology, 2013, 47(17), 9898-9903.
    連結:
  23. Koppmann, R., Volatile Organic Compounds in the Atmosphere. Wiley-Blackwell, 2007, 512.
    連結:
  24. Kim, H. H., Ogata, A., Futamura, S., Oxygen partial pressure - dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Applied Catalysis B : Environmental, (2008), 79(4), 356-367.
    連結:
  25. Koppmann, R., Chemistry of volatile organic compounds in the atmosphere. Handbook of Hydrocarbon and Lipid Microbiology, 2010, 267-277.
    連結:
  26. Lee, B. Y., Park, S. H., Lee, S. C., Kang, M., Choung, S. J., Decomposition of benzene by using a discharge plasma - photocatalyst hybrid system. Catalysis Today, 2004, 93-95, 769-776.
    連結:
  27. Liang, P., Jiang, W., Zhang, L., Wu, J., Zhang, J., Yang, D., Experimental studies of removing typical VOCs by dielectric barrier discharge reactor of different sizes. Process Safety and Environmental Protection, 2015, 94, 380-384.
    連結:
  28. Lima, S.M., Assaf, J.M., Peña, M.A., Fierro, J.L.G., Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane. Applied Catalysis A : General, 2006, 311(0), 94-104.
    連結:
  29. Xi-zhen, L., Wang, J. G., Liu, C. J., He, F., Eliasson, B., Partial oxidation of methane to syngas over Ni-Fe/Al2O3 catalyst with plasma enhanced activity. Reaction Kinetics and Catalysis Letters, 2003, 79(1), 69-79.
    連結:
  30. Lu, B., Zhang, X., Yu, X., Feng, T., Yao, S., Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials, 2006, 137(1), 633-637.
    連結:
  31. Marinova, Y., Hohemberger, J.M., Cordoncillo, E., Escribano, P., Carda, J.B., Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments. Journal of the European Ceramic Society, 2003, 23(2), 213-220.
    連結:
  32. Nicole, J., D. Tsiplakides, Wodiunig, S., Comninellis, C., Activation of catalyst for gas - phase combustion by electrochemical pretreatment. Journal of the Electrochemical Society, 1997, 144, 312-314.
    連結:
  33. Niu, J., Deng, J., Liu, W., Zhang, L., Wang, G., Dai, H., He, H., Zi, X., Nanosized perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate. Catalysis Today, 2007, 126(3-4), 420-429.
    連結:
  34. Ogata, A., Ito, D., Mizuno, K., Kushiyama, S., Gal, A., Yamamoto, T., Effect of coexisting components on aromatic decomposition in a packed - bed plasma reactor. Applied Catalysis A : General, 2002, 236, 9-15.
    連結:
  35. Ojala, S., Lassi, U., Peramaki, P., Keiski, R.L., Effect of process parameters on catalytic incineration of solvent emissions. Journal of Automated Methods & Management in Chemistry, 2008, 2008, 759141.
    連結:
  36. Park, D.-W., Yoon, S. H., Kim, G.-J., Sekiguchi, H., The effect of catalyst on the decomposition of dilute benzene using dielectric barrier discharge. Journal of Industrial and Engineering Chemistry, 2002, 8, 393-398.
    連結:
  37. Pereñíguez, R., González-DelaCruz, V.M., Holgado, J.P., Caballero, A., Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B : Environmental, 2010, 93(3-4), 346-353.
    連結:
  38. Roland, U., Holzer, F., Kopinke, F. D., Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 2002, 73(3), 315-323.
    連結:
  39. Shen, S.-T., Weng, H.-S., Comparative study of catalytic reduction of nitric oxide with carbon monoxide over the La1-xSrxBO3 (B = Mn, Fe, Co, Ni) catalysts. American Chemical Society, 1998, 37, 2654-2661.
    連結:
  40. Spinicci, R., Faticanti, M., Marini, P., De Rossi, S., Porta, P., Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. Journal of Molecular Catalysis A : Chemical, 2003, 197(1-2), 147-155.
    連結:
  41. Subrahmanyam, C., Renken, A., Kiwi-Minsker, L., Novel catalytic dielectric barrier discharge reactor for gas-phase abatement of isopropanol. Plasma Chemistry and Plasma Processing, 2006, 27(1), 13-22.
    連結:
  42. Sui, Z. J., Vradman, L., Reizner, I., Landau, M. V., Herskowitz, M., Effect of preparation method and particle size on LaMnO3 performance in butane oxidation. Catalysis Communications, 2011, 12(15), 1437-1441.
    連結:
  43. Sutthiumporn, K., Maneerung, T., Kathiraser, Y., Kawi, S., CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe):Roles of lattice oxygen on C-H activation and carbon suppression. International Journal of Hydrogen Energy, 2012, 37(15), 11195-11207.
    連結:
  44. Tabata, K., Hirano, Y., Suzuki, E., XPS studies on the oxygen species of LaMn1-xCuxO3. Applied Catalysis A : General, 1998, 170, 245-254.
    連結:
  45. Van Durme, J., Dewulf, J., Leys, C., Van Langenhove, H., Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment : A review. Applied Catalysis B : Environmental, 2008, 78(3-4), 324-333.
    連結:
  46. Vandenbroucke, A.M., Morent, R., De Geyter, N., Leys, C., Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 2011, 195, 30-54.
    連結:
  47. Wang, M., Zhang, P., Li, J., Jiang, C., The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Chinese Journal of Catalysis, 2014, 35(3), 335-341.
    連結:
  48. Wu, Q. H., Liu, M., Jaegermann, W., X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Materials Letters, 2005, 59(16), 1980-1983.
    連結:
  49. Zhang, J., Tan, D., Meng, Q., Weng, X., Wu, Z., Structural modification of LaCoO3 perovskite for oxidation reactions:The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Applied Catalysis B : Environmental, 2015, 172, 18-26.
    連結:
  50. Zhang, C., Guo, Y., Guo, Y., Lu, G., Boreave, A., Retailleau, L., Baylet, A., Giroir-Fendler, A., LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Applied Catalysis B : Environmental, 2014, 148-149, 490-498.
    連結:
  51. Zhang, C., Hua, W., Wang, C., Guo, Y., Guo, Y., Lu, G., Baylet, A., Giroir-Fendler, A., The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B : Environmental, 2013, 134-135, 310-315.
    連結:
  52. Zheng, C., Zhu, X., Gao, X., Liu, L., Chang, Q., Luo, Z., Cen, K., Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor. Journal of Industrial and Engineering Chemistry, 2014, 20(5), 2761-2768.
    連結:
  53. Zhu, T., Li, J., Jin, Y. Q., Liang, Y. H., Ma, G. D., Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. International Journal of Environmental Science & Technology, 2009, 6(1), 141-148.
    連結:
  54. Zhu, J., Thomas, A., Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B : Environmental, 2009, 92(3–4), 225-233.
    連結:
  55. Zhu, Y. R., Li, Z. H., Zhou, Y. H., Plasma treatment of Ni and Pt catalysts for partial oxidation of methane. Reaction Kinetics and Catalysis Letters, 2005, 87(1), 33-41.
    連結:
  56. 行政院環境保護署「空氣污染防制法規」
    連結:
  57. 行政院環境保護署「有害空氣污染物管制規範及排放標準研定計畫」
    連結:
  58. 行政院勞工委員會勞工安全衛生研究所「航太工業除漆及噴漆作業有機溶劑暴露調查」,2002年
    連結:
  59. Batiot-Dupeyrat, C., Valderrama, G., Meneses, A., Martinez, F., Barrault, J., Tatibouët, J.M., Pulse study of CO2 reforming of methane over LaNiO3. Applied Catalysis A : General, 2003, 248(1–2), 143-151.
  60. Borze˛cka, A., Activity of perovskite catalysts contain Pt or Pd in toluene oxidation. Natural Sciences, 2012, 26-28.
  61. Chang, J. S., Lawless, P.A., Yamamoto, T., Corona discharge processes. Institute of Electrical and Electronics Engineers, 1991, 19, 1152-1166.
  62. Flagan, R.C.; Seinfeld, J.H., Fundamentals of Air Pollution Engineering. Prentice Hall, New Jersey, 1988, 103.
  63. Ivanova, S., Pérez, A., Centeno, M.Á., Odriozola, J.A., Structured catalysts for volatile organic compound removal. New and Future Developments in Catalysis Catalysis for Remediation and Environmental Concerns, 2013, 233-256.
  64. Li, Z.H., Tian, S.X., Wang, H.T., Tian, H.B., Plasma treatment of Ni catalyst via a corona discharge. Journal of Molecular Catalysis A : Chemical, 2004, 211, 149-153.
  65. Lisi, L., Bagnasco, G., Ciambelli, P., Rossi, S.D., Perovskite-type oxides II. redox properties of LaMn1-xCuxO3 and LaCo1-xCuxO3 and methane catalytic combustion. Journal of Solid State Chemistry, 1999, 146, 176-183.
  66. MSDS危害物質危害數據資訊資料庫
  67. 沈孝宗,「以波洛斯凱特型觸媒催化NO還原反應之比較研究」,國立成功大學化學工程研究所,臺南,1998年
  68. 雷敏宏、吳紀聖,「觸媒化學概論與應用」,2014年
  69. 勞動部「勞工作業場所容許暴露標準」,2014年
  70. 劉國棟,「VOC 管制趨勢展望」,工業污染防制,第 48 期,15-31,1993年