Title

系集定量降水預報方法之研究

Translated Titles

QPF Verification Study of the Ensemble Forecast System

Authors

葉世瑄

Key Words

系集預報系統 ; 定量降水預報 ; 機率擬和平均PM ; 修改之PM法PMmod. ; 預兆得分 ; 公正預兆得分 ; EPS(Ensemble Prediction System) ; QPF(Quantitative Precipitation Forecast) ; PM(Probability-matched mean) ; PMmod.(PM modify) ; TS(Threat Score) ; ETS(Equitable threat score)

PublicationName

中央大學大氣物理研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

林沛練

Content Language

繁體中文

Chinese Abstract

如何應用並擷取系集成員的預報結果是非常重要的。系集平均為普遍使用的統計方 法,但因雨量不連續性以及極值發生區域太局部,系集平均會將極值平滑掉導致雨量低估,本研究中使用兩個統計方式:PM與PMmod.來改善此缺陷。PM(Ebert, 2001)為使用系集平均的空間分布並經由重新分配所有系集之降雨頻率分布來改善QPF;另外,本研究自行提出新的系集QPF方法PMmod.,設計理念為一個好的系集預報理論上應可將真實的降雨極值包含在各系集成員的QPF極值中,這個方法基於PM的概念,使用系集平均之空間分布,但降雨頻率則是各成員降雨頻率之系集平均。   本研究使用兩個預報個案與2012年6月平均進行測試並分析中央氣象局(CWB)系集預報系統(WEPS)的系集平均、PM與PMmod.方法得到的QPF特性與技術得分,發現PMmod.或PM都可增加QPF技術,例如在50毫米,PM與PMmod. 皆可使官方TS進步率達11.5%,ETS進步率可達50%,但中小雨的預報技術仍是系集平均較好。在個案一的梅雨鋒面個案中,因系集模式對梅雨鋒面的速度與強度掌握有所偏差,使系集成員極值皆預報不足,因此即使使用PM仍不足預測極值。在個案二的蘇力(2013)颱風個案中,使用PMmod.或PM的前12小時QPF皆比系集平均佳,但後12小時PM的QPF明顯高估,主因為模式中的颱風移速較實際移速慢。另外在兩個個案中,無論是系集平均、PM或PMmod降雨分布皆有集中在山區的偏差或傾向,顯示WEPS對於台灣地形上的降雨偏差仍有進步的空間。   系集平均、PM或是PMmod.等後處理方式,可以有限度改善預報結果。但假使一開始模式預報就沒有掌握到實際降水的特徵,則這些後處理方式能幫助的其實非常有限,這就回溯於系集預報系統本身動力設定的改善。從前人研究可知,如果先調整原本的降水空間分布與系統誤差校正,再進行PM或PMmod.,可以取得更好的預報結果。

English Abstract

From ensemble members results to get useful information is an important issue for ensemble forecast system. Since rainfall distribution is not continuous, and too localized such as especially extreme heavy rainfall occur, the averaging process usually "smears" the rain rates so that the maximum rainfall is reduced and area of light rain is artificially enlarged. PM(probability-matched ensemble mean) is a new ensemble product, it has the similar spatial pattern as the simple ensemble mean, and could catch correct frequency distribution of rain rates and QPFs. Especially, we will propose a modify PM( PMmod.). It is similar as PM could display similar spatial pattern as the simple ensemble mean, its performance depends on the actual rainfall extremes should be included in the all members QPFs of a good Ensemble Prediction System (EPS). Therefore it is suitable to average all the rain rates frequency distribution from all the individual members. From the 20120610-20120612 case (Case1), Typhoon Soulik(2013) case (Case2) and 201206 monthly experiment to analyze the characteristic and skill of the ensemble mean, PM and PMmod., we can find that they can modify the QPF, especially PM and PMmod. can make the TS progress rate up to 11.5%, ETS progress rate even up to 50% in the 50 mm(12 accumulated precipitation). But in the light rain, the ensemble mean is still the best. Nerveless, in Case1, the ensemble members don’t catch the correct speed and strength of the Meiyu front, the rainfall for ensemble member distribution is generally underestimated, that is a reason why PM can’t forecast the heavy rain correctly. In Case2, it has good performance for PM and PMmod results from the previous 12 hours rainfall forecast of typhoon Soulik, however in the later 12 hours rainfall forecast of the Soulik, the QPF is generally overestimate in all three statistical methods, because the simulated storm speed is slower than actual. Especiall, the spatial pattern of the ensemble mean, in both PM and PMmod concentrated in the mountains and result in bias. From this study, we can find that derive the correct distribution of rainfall result from the ensemble forecast system(WEPS) over the complex terrain in Taiwan has some progress but still need be investigated in the coming days. If all ensemble members of forecast model can’t catch the correct event signal, no matter what kind post processes method as simple ensemble mean, PM or PMmod could only modify the forecast results a little. Nevertheless, all the products like mean, previous study pointed out several include a resampling of the ensemble realizations, a rainfall pattern adjustment, and a bias-correction, could modify PM scheme to substantially reduce or eliminate the intrinsic model rainfall bias and to provide better QPFs. Expectations of the future, pattern adjustment and bias-correction both PM or PMmod processes to improve QPFs of ensemble forecast.

Topic Category 基礎與應用科學 > 大氣科學
地球科學學院 > 大氣物理研究所
Reference
  1. 李志昕、洪景山,2011:區域系集預報系統研究:物理參數化擾動。大氣科學,
    連結:
  2. 胡志文、馮欽賜、汪鳳如、陳建河、鄭明典,2002:中央氣象局全球模式之氣候特  徵:東亞夏季季風。大氣科學,30,99-116。
    連結:
  3. 曾仁佑、林沛練、馬佳齡、童裕翔,2004:東亞地區區域氣候之可預報度與回歸預  報研究。全球變遷通訊雜誌,41,25-34。
    連結:
  4. 簡芳菁、柳懿秦、周仲島、林沛練、洪景山和蕭玲鳳,2005:2003 年梅雨季MM5   系集降水預報。大氣科學,33,255 - 275。
    連結:
  5. 27th session of the Working Group on Numerical   
    連結:
  6.   Experimentation, Boulder, CO, USA, 17-21 October 2011
    連結:
  7. Buizza, Roberto, 2000: Chaos and Weather Prediction.
    連結:
  8. Chen, W. Y., and H. M. van Den Dool, 1997. Atmospheric   
    連結:
  9.   Forecasting, 19, 735-750.
    連結:
  10. Ebert, Elizabeth E., 2001: Ability of a Poor Man's Ensemble   to Predict the Probability and Distribution of
    連結:
  11.   Precipitation. Mon. Wea. Rev., 129, 2461–2480.
    連結:
  12.   quantitative precipitation forecast for topography-
    連結:
  13. Leith, C. E., 1974: Theoretical skill of Monte Carlo
    連結:
  14.   forecasts. Mon.Wea. Rev., 102, 409–418.
    連結:
  15. Lorenz, Edward N., 1963: Deterministic Nonperiodic Flow. J.
    連結:
  16.   Atmos. Sci., 20, 130–141.
    連結:
  17.   flow which possesses many scales of motion . Tellus ,
    連結:
  18.   A.Tompkins, 2003: The atmospheric general circulation
    連結:
  19.   systems. Monthly Weather Review, 128, 2077-2107.
    連結:
  20. Toth, O. Talagrand, G. Candille and Y. Zhu, 2003: Chapter 7:
    連結:
  21.   Stephenson, John Willey & Sons.
    連結:
  22.   Res., 109, D18203. doi:10.1029/2003JD004368.
    連結:
  23.   Numerical Weather Prediction. Washington, D.C., Amer.
    連結:
  24.   Probability and Statistics. New Orleans, LA, 20-24 Jan.
    連結:
  25.   39,95 - 116。
  26. 洪志誠:天氣預報的準確度,
  27. http://mail.dali.tc.edu.tw/~earth/dali-earth/chapter/ch8/forecast2.htm
  28. 郭閔超、李孟軒、蔡甫甸,2012:中央氣象局2013~2011年官方降水預報之分析  與探討。天氣分析與預報研討會,143-146。
  29. 曹嘉宏、洪景山,2011:系集模式颱風定量降水:個案研究。建國百年天氣分析預  報與地震測報研討會論文彙編,中央氣象局,278-282。
  30. 黃椿喜、呂國臣、洪景山,2012:系集預報系統在氣象局鄉鎮精緻化預報之應用。  天氣分析與預報研討會,143-146。
  31. 鄭凱傑、胡志文、施宇晴,2011:二步法動力氣候預報統系集預報診斷分析。建國  百年天氣分析預報與地震測報研討會論文彙編,中央氣象局,355-360。
  32. 美國國家氣象局天氣預報中心(NWSWPC),
  33. http://www.hpc.ncep.noaa.gov/html/hpcverif.shtml#6hour
  34. 歐洲中期天氣預報中心 (ECMWF),
  35. http://www.ecmwf.int/products/forecasts/guide/Ensemble_mean_and_median.html
  36. 澳大利亞天氣與氣候研究中心(CAWCR),
  37. http://www.cawcr.gov.au/staff/eee/etrap/probmatch.html
  38. http://www.ecmwf.int.newsevents/training/course_notes/PREDICTABILITY/CHAOS/index.html.
  39.   Predictability of Seasonal, Annual, and Decadal Climate
  40.   Means and the Role of the ENSO Cycle: A Model Study.
  41.   Journal of Climate, 10, 1236-1254.
  42. Chien, F. C., and B. J.-D. Jou, 2004:MM5 Ensemble
  43.   Precipitation Forecasts in the Taiwan Area for Three
  44.   Early Summer Convective (Mei-yu) Seasons, Wea.   
  45. Fang, X, and Y. Kuo, 2013: Improving ensemble-based
  46.   enhanced typhoon heavy rainfall over Taiwan with a
  47.   modified probability-matching technique. Mon. Wea. Rev.
  48.   doi:10.1175/MWR-D-13-00012.1, in press.
  49. --------- and E.N., 1965, A study of the predictability of a
  50.   28-variable atmosphere model . Tellus, 17, 321-333.
  51. --------- and E.N., 1969, Atmosphere predictability of a
  52.   21, 289-307.
  53. Roeckner E., G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch,
  54.   M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh,
  55.   E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, and
  56.   model ECHAM 5. PART I: Model description. Max Planck
  57.   Institute for Meteorology Rep. No. 349. 140pp.
  58. Stensrud, D. J., J. W. Bao, T. T. Warner, 2000. Using
  59.   initial condition and model physics perturbations in
  60.   short-range ensemble simulations of mesoscale convective
  61.   Probability and ensemble forecast, Environmental
  62.   Forecast Verification: A Practitioner’s Guide in
  63.   Atmospheric Science, Edited by I. T. Jolliffe and D. B.
  64. Yang, M.-J.; B. J.-D. Jou, S. C. Wang, J. S. Hong, P. L.
  65.   Lin, J. H. Teng, H. C. Lin, Hui-Chuan, 2004: Ensemble
  66.   prediction of rainfall during the 2000–2002 Mei-Yu
  67.   seasons: Evaluation over the Taiwan area. J. Geophys.
  68. Zhou, B. , J. McQueen, J. Du, G. DiMego, Z. Toth and Y. Zhu,
  69.   2005: Ensemble forecast and verification of low level
  70.   wind shear by the NCEP SREF system. 21st Conference on
  71.   Weather Analysis and Forecasting/17th Conference on
  72.   Meteor. Soc.,11B.7A
  73. ------ and J. Du, 2010: Fog prediction from a multi-model
  74.   mesoscale ensemble prediction system. Wea. Forecasting,
  75.   25, 303-322.
  76. Zhu, Y. and Z. Toth, 2008: Ensemble Based Probabilistic
  77.   Forecast Verification. 19th AMS conference on
  78.   2008.