Title

結構振型探討牙科植體術後臨床骨缺損

Translated Titles

The Mode shape of structures Assess Clinical Bone Defects after Dental Implantation

Authors

謝易珊

Key Words

牙科植體 ; 骨缺損 ; 共振頻率 ; 模態分析 ; 簡諧分析 ; 局部模態振型 ; Dental implant ; Bone defect ; Resonant frequency ; Modal analysis ; Harmonic analysis ; Local mode shape

PublicationName

中央大學機械工程學系學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

潘敏俊

Content Language

繁體中文

Chinese Abstract

本研究以結構振型探討牙科植體術後臨床骨缺損檢測課題,透過數值分析方法,找出植體/下顎骨局部模態植體振型及共振頻率,以利於評估骨缺損程度。研究分兩部份,第一部份為有限元素法分析,使用結合與摩擦兩種植體與下顎骨接觸條件,分別模擬臨床之植牙骨整合與以人造下顎骨進行實驗之情況,由模態分析獲得植體/下顎骨之自然頻率與振型,透過簡諧分析分別得到植體在頰舌側及近遠心側之響應。第二部份為聲能激振-位移響應實驗,以喇叭之聲能激振植體/下顎骨結構,並以非接觸式電容式位移計量測振動響應訊號,後續和Osstell III檢測儀量測結果作比較。 模擬結果顯示,結構產生植體局部模態振型時,檢測骨整合穩固度成效較明顯,而非接觸式聲能激振-位移響應實驗,受限於高頻響應位移小,以及位移計量測動態範圍、訊雜比低,對於高頻局部模態實驗效果不佳,僅能測得下顎骨低頻整體共振,不同缺損型態之共振頻率差異不大;另以Osstell III檢測儀可明確評估骨缺損程度。故上述模擬與實驗結果可證實需以植體局部模態之共振頻率進行骨缺損檢測。

English Abstract

The aim of this study is to assess clinical bone defects between an implant and jaw bone after dental implantation by examining the mode shape of structures. Different severity of bone defects was evaluated through structure resonant frequencies and corresponding mode shapes of the implant and jaw bone by using numerical analysis and experimentation. This study consists of two parts. First, the assumption of two kinds of boundary conditions, bonding and rubbing, was applied to simulate osseointegration in the clinical dentistry and the in-vitro bone defect model, respectively, in finite element analysis. Natural frequencies and their mode shapes of the implant/jaw were computed by the modal analysis. During the harmonic analysis, the response displacement versus frequency of implant in the buccolingual and mesiodistal directions were defined. Secondly, the structural resonant frequencies were measured by the acoustic excitation-displacement response procedure, and then this result was compared with using the detection of Osstell mentor. The simulation results show that the structure local mode corresponding high-frequency resonance can be used to examining bone imperfection remarkably. Limited by extremely tiny response displacement, measuring dynamic range of the capacitive displacement sensor, the acoustic excitation-displacement response measurement can only acquire the structure global mode of the mandible corresponding to low-frequency resonance. In addition, Osstell mentor can assess bone defects effectively. Therefore, the above-mentioned simulations and experimental results prove that the local mode is promising to evaluate the defect severity for the osseointegration of dental implantation.

Topic Category 工學院 > 機械工程學系
工程學 > 機械工程
Reference
  1. [1] Branemark, P. I., Brerine, U.and Adell, R., “Intraosseous Anchorage of Dental Prosthess: I Experimental Studies,” Scand J Plast Reconstar Surg, pp. 81-100 (1963).
    連結:
  2. [5] 莊瀚伯,「牙科植體術後骨缺損型態之結構分析」,碩士論文,國立中央大學機械工程研究所,桃園 (2006)。
    連結:
  3. [6] 陳梓尉,「共振頻率法於牙根植體缺損位置判別研究」,碩士論文,國立中央大學機械工程研究所,桃園 (2007)。
    連結:
  4. [8] 吳柏勳,「植牙術後穩固度評估研究」,碩士論文,國立中央大學 機械工程研究所,桃園 (2011)。
    連結:
  5. [9] Albrektsson, T. and Albrektsson, B., “Osseointehration of Bone Implants: a Review of an Alterative Mode of Fixation,” Acta Orthopaedica Scandinavica, Vol. 58, pp. 567-577 (1987).
    連結:
  6. [10] Johansson, C. B. and Albreksson, T., “Integration of Screw Implants in the Rabbit: a One-Year Follow-up of Removal Torque of Titanium Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 2, No. 2, pp. 69-76 (1987).
    連結:
  7. [11] Oka, H., Yamamoto, T., Saratani, K. and Kawazoe, T., “Application of Mechanical Mobility of Periodontal Tissues to Tooth Mobility Examination,” Medical & Biological Engineering & Computing, Vol. 27, No. 1, pp. 75-81 (1989).
    連結:
  8. [12] 陳璟鋒,「利用共振頻率初始值預測牙科植體之癒合時間及可能穩定值:以動物實驗及離體實驗」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北 (2003)。
    連結:
  9. [13] Leholm, U. and Zarb, G. A., “Tissue-Integrated Prostheses: Osseointegration in Clinical Denisity,” Quintessence Publishing, Chicago(IL), pp. 199-209 (1985).
    連結:
  10. [14] Sunden, S., Grondahl, K. and Grondahl, H. G., “Accuracy and Precision in the Radiographic Diagnosis of Clinical Instability in Brånemark Dental Implants,” Clinical Oral Implants Research, Vol. 6, No. 4, pp. 220-226 (1995).
    連結:
  11. [18] Meredith, N., Alleyne, D. and Cawley, P., “Quantitative Determination of the Stability of the Implant-Tissue Interface Using Resonance Frequency Analysis,” Clinical Oral Implants Research, Vol. 7, No. 3, pp. 261-267 (1996).
    連結:
  12. [19] Sennerby, L. and Meredith, N., “Impant Stability Measurements Using Resonance Frequency Analysis: Biological and Biomechanical aspects and Clinical Implications,” Periodontology 2000, Vol. 47, pp. 51-66 (2008).
    連結:
  13. [20] Rasmusson, L., Meredith, N., Cho, I. H. and Sennerby, L., ”The Influence of Simultaneous versus Delayed Placement on the Stability of Titanium Implants in Onlay Bone Grafts: A Histologic and Biomechanic Study in the Rabbit,” International Journal of Oral and Maxillofacial Surgery, Vol. 28, pp. 224-231 (1999).
    連結:
  14. [21] Tözüm, T. F., Turkyilmaz, I. and McGlumphy, E. A., “Relationship between Dental Implant Stability Determined by Resonance Frequency Analysis Measurements and Peri-implant Vertical Defects: an in Vitro Study,” Journal of Oral Rehabilitation, Vol. 35,pp. 739-744 (2008).
    連結:
  15. [22] Tözüm, T. F., Turkyilmaz I. and Bal, B. T., “Initial Stability of Two Dental Implant Systems: Influence of Buccolingual Width and Probe Orientation on Resonance Frequency Measurements,” Clinical Implant Dentistry and Related Research, Vol. 12, No. 3, pp. 194-201 (2010).
    連結:
  16. [23] Tözüm T. F., Bal B. T., Turkyilmaz I.and Gulay, G., “Which Device is more Accurate to Determine the Stability/Mobility of Dental Implants? A Human Cadaver Study,” Journal of Oral Rehabilitation, Vol. 37, pp. 217-224 (2010).
    連結:
  17. [24] Lee, S. Y., Huang, H. M., Lin, C. Y. and Shih, Y. H., “In vivo and in vitro Natural Frequency Analysis of Periodontal Conditions, an Innovative Method,” Journal of Periodontal Research, Vol. 71, No. 4, pp. 632-640 (1999).
    連結:
  18. [25] Huang, H. M., Lee, S. Y., Yeh, C. Y. and Lin, C. T., “Resonance Frequency Assessment of Dental Implant Stability with Various Bone Qualities : a Numerical Approach,” Clinical Oral Implants Research, Vol. 13, pp. 65-74 (2002).
    連結:
  19. [26] Natali, A. N., Pavan, P. G., Schileo, E. and Williams, K. R., “A Numerical Approach to Resonance Frequency Analysis for the Investigation of Oral Implant Osseointegration,” Journal of Oral Rehabilitation Res,.Vol.33, No.9, pp. 674–681 (2006).
    連結:
  20. [27] Pattijn, V., Van Lierde, C., Van Der Perre, G., Naert, I. and Vander Sloten, J., “The Resonance Frequencies and Mode Shapes of Dental Implants: Rigid Body Behaviour versus Bending Behaviour. A Numerical Approach,” Journal of Biomechanics, Vol. 39, No. 5, pp. 939-947 (2006).
    連結:
  21. [28] Swider, P., Guérin, G., Baas J., Søballe, K. and Bechtold, J. E., “Characterization of Bone-implant Fixation Using Modal Analysis: Application to a Press-fit Implant Model,” Journal of Biomechanics, Vol. 42, pp. 1643-1649 (2009).
    連結:
  22. [29] Lee, L. Y., Huang, H. M., Hung, J. M., Chou, S. Y., Lee, S. Y., Chiu, W. T., Tsai, C. M., Lo, Y. C. and Lin, C. T., “Dynamic Response Analysis of the Mechanism of Mandible Trauma,” Chinese Journal of Dental Research, Vol 23, No.4, pp. 304-312 (2004).
    連結:
  23. [32] Virani, N. A., Harman, M. ,Li, K., Levy, J., Pupello, D. R. and Frankle, M. A., “In Vitro and Finite Element Analysis of Glenoid Bone/Baseplate Interaction in the Reverse Shoulder Design,” Journal of Shoulder and Elbow Surgery, Vol. 17, pp. 509-521 (2008).
    連結:
  24. [2] Brunski, J. B., The Influence of Force, Motion and Related Quantities on the Responseof Bone to Implants, Raven Press Ltd. (1998).
  25. [3] 王大介,「利用共振頻率分析法研究植體在類似不同骨密度環境下之穩固度」,碩士論文,國防醫學院牙醫科學研究所,臺北 (2004)。
  26. [4] Bogaerde, L. D., “A Proposal for the Classification of Bony Defects Adjacent to Dental Implants,” International Journal of Periodontics and Restorative Dentistry, Vo1. 24, pp. 264-271 (2004).
  27. [7] 杜瑋珊,「共振頻率法之牙科植體個體骨缺損檢測研究」,碩士論文,國立中央大學機械工程研究所,桃園 (2009)。
  28. [16] Singh, R, The Design Fabrication and Characterization of an Ultrasonic Crack Detection System for Human Teeth, PhD Thesis, University of California Los Angles, California (2005).
  29. [17] Thomson, W. T., Theory of Vibration with Applications, Prentice-Hall, New York, pp. 221-229 (1995).
  30. [30] He, J. and Fu, Z. F., Modal Analysis, Butterworth-Heinemann, Oxford. (2001).
  31. [31] Mellal, A., Wiskott, H. W. A., Botsis, J., Scherrer, S. S. and Belser U. C., “Stimulating Effect of Implant Loading on Surrounding Bone Comparison of Three Numerical Models and Validation by In Vivo Data,” Clinical Oral Implants Research, Vol. 15, pp. 239-248 (2004).
  32. [33] 劉晉奇,褚晴暉,有限元素分析與 ANSYS 的工程應用,滄海 (2006)。