Title

吸濕效應對玻纖複合材料機械性質之影響

Translated Titles

The influence of Hygroscopic effect to the mechanical properties of glass fiber composite material

Authors

羅乾豪

Key Words

玻璃纖維複合材料 ; 吸濕 ; 配向性 ; 熱活化 ; 射出成型 ; 機械特性 ; 拉伸性質 ; 模流分析 ; glass fiber composite material ; plasticization ; thermal activation ; fiber orientation ; free volume ; moisture absorption effect ; moldflow ; injection ; Nylon 9

PublicationName

中央大學機械工程研究所碩士在職專班學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

林志光

Content Language

繁體中文

Chinese Abstract

本研究目的在探討不同進膠點的Nylon 9+33%玻纖複合材料在各種吸濕級距下的機械性質變化,並且比較吸濕後玻纖複合材料在常溫與高溫下機械性質之差異。本研究運用商用模流分析軟體,模擬計算中間進膠點與側面進膠點的玻璃纖維配向性以及殘留應力,並依照ASTM D638規範製作兩種進膠方式的試片,分別進行120 h、240 h、360 h、480 h及600 h吸濕實驗,探討不同進膠點在吸濕程度上的差異,接著將吸濕後的試片以鹵素燈照射方式加溫,觀察不同進膠點與濕度損耗的關係。最後將兩種不同進膠點試片分別以上述吸濕級距進行吸濕,再以MTS拉伸試驗機進行拉伸實驗,探討不同進膠點試片在不同吸濕級距下之常溫與高溫拉伸性質之變化,並以掃瞄式電子顯微鏡(SEM)觀察其拉伸破斷面變化。 實驗結果顯示,常溫下中間進膠點比側面進膠點試片更容易受到吸濕效應影響,而在高溫時中間進膠點的濕度損耗也比側面進膠點大。在常溫拉伸實驗方面,適當的吸濕時效可以增加中間進膠點的抗拉強度,不過在側面進膠點確無增加效果;在延伸率部分,適當的吸濕時效在兩種試片上均有增加延伸率的效果,中間進膠點在120 h為最高,側面進膠點最高延伸率則是發生在240 h。在高溫時,因為熱活化關係使得吸濕後兩種進膠點的抗拉強度低於常溫,而延伸率則是吸濕後兩種進膠點在高溫時均高於常溫時的延伸率。常溫與高溫下側面進膠點試片的抗拉強度以及降伏強度在各個吸濕級距中均優於中間進膠點,主要是因為側面進膠點玻璃纖維的配向性以及成型後的殘留應力優於中間進膠點,在本研究所進行的各項實驗中證實,在吸濕效應以及拉伸性質上側面進膠方式均優於中間進膠方式。

English Abstract

The purpose of this study is to investigate the mechanical properties of Nylon 9+33% glass fiber composite material with different injection locations and moisture absorption levels. The effect of environmental temperature on the mechanical properties is also studied for such a composite material with various moisture absorption levels. A commercial moldflow software is employed to simulate and calculate the fiber orientation and residual stress for center- and side-gate injection. Tensile specimens are made as per ASTM D638 Standard with two injection locations and exposed to steam for 120 h, 240 h, 360 h, 480 h, and 600 h to discuss the moisture absorption effect. After moisture absorption, the specimens are dried at 95oC using halogen lamps to study the relation of moisture releasing ability with injection location. Tensile tests are then performed at room temperature and 95oC using an MTS material testing machine. Scanning electron microscopy (SEM) is applied to characterize the fracture features in the broken specimens. Experimental results show that the center-gate injected specimens are subjected to more moisture effects than the side-gate injected ones and have a greater extent of moisture loss at 95oC. A certain extent of moisture can increase the room-temperature ultimate tensile strength of center-gate injected specimens, but not for the side-gate injected specimens. An proper amount of moisture also increases the room-temperature elongation for both center- and side-gate injected specimens, with a peak value taking place at a moisture absorbing time of 120 h and 240 h for center- and side-gate injected specimens, respectively. The ultimate tensile strength of moisture-absorbed specimens at 95oC is less than that at room temperature regardless of the injection location, due to a thermal activation effect. On the other hand, the high-temperature elongation is greater than the room-temperature one for each given moisture-absorbed level of both center- and side-gate injected specimens. Side-gate injected specimens have better tensile properties than do the center-gate injected ones due to a better fiber orientation quality and less residual stresses. They are also less sensitive to the moisture absorbing effect.

Topic Category 工學院 > 機械工程研究所碩士在職專班
工程學 > 機械工程
Reference
  1. 2.A. G. Pedroso, L. H. I. Mei, J. A. M. Agnelli, and D. S. Rosa,“The Influence of the Drying Process Time on the Final Properties of Recycled Glass Fiber Reinforced Polyamide 6,”Polymer Testing,Vol.21,pp.229-232,2002.
    連結:
  2. 5.V. Miri, O. Persyn, J.-M. Lefebvre, and R. Seguela, “Effect of Water Absorption on the Plastic Deformation Behavior of Nylon 6,”European Polymer Journal,Vol.45, pp.757-762,2009.
    連結:
  3. 6.M. V. Timmaraju, R. Gnanamoorthy, and K. Kannan, “Influence of Imbibed Moisture and Organoclay on Tensile and Indentation Behavior of Polyamide 66/Hectorite Nanocomposites,”Composites Part B,Vol.42,pp.466-472,2011.
    連結:
  4. 7.K. R. Rajeesh, R. Gnanamoorthy, and R. Velmurugan, “Effect of Humidity on the Indentation Hardness and Flexural Fatigue Behavior of Polyamide 6 Nanocomposite,” Materials Science and Engineering A,Vol.527,pp.2826-2830, 2010.
    連結:
  5. 12.“Standard Test Method for Tensile Properties of Plastics,”ASTM Standard D638-99,ASTM International,West Conshohocken,PA,USA,2000.
    連結:
  6. 15.林義鈞,“燃料電池雙極板射出成型纖維排向模擬分析,”成功大學機械工程學系碩士論文,2008.
    連結:
  7. 18.L. Cabedo, J. M. Lagaro, D. Cava, J. J. Saura, and E. Gimenez,“The Effect of Ethylene Content on the Interaction Between Ethylene-Vinyl Alcohol Copolymers and Water-II: Influence of Water Absorption on the Mechanical Properties of EVOH Copolymers,”Polymer Testing,Vol.25,pp.860-867, 2006.
    連結:
  8. 19.胡蒨傑,“自由體積及氣體-高分子交互作用對高分子薄膜氣體吸附與傳輸性質之影響, 中原大學化學工程學系博士學位論文, 2004.
    連結:
  9. 1.Kuraray Co.,Ltd.,Genestar PA 9T技術手冊,日本,2003.
  10. 3.楊弼友,“PBT/GF於高應變率拉伸性質之穩健性分析,”中央大學機械工程研究所碩士論文,2002.
  11. 4.陳宜正,“具補強肋之塑膠射出壓縮成型品表面凹痕與翹曲變形研究,”雲林科技大學機械工程系碩士論文,2001.
  12. 8.劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,工程材料科學,全華科技圖書股份有限公司,台北,2006.
  13. 9.楊國明、王麗芬、王振乾、鍾宜璋譯, 高分子化學, 高立圖書有限公司,台北,2011.
  14. 10.李韶瀚,“延伸溫度對Nylon 66 形態及物性影響效應之研究,” 台灣科技大學材料科技研究所碩士論文,2009.
  15. 11.陳良相、黃子健、劉昭宏, MOLDFLOW MPI實用基礎, 全華科技圖書股份有限公司,台北,2007.
  16. 13.Chen Hsong Machinery Taiwan Co.,Ltd.,Supermaster超霸SM系列-HCV伺服省電注塑機 產品目錄, 取自http://www.chenhsong.com.hk/TC/product_details.aspx?id=8.
  17. 14.許峻嘉,“射出成型製程參數對短玻璃纖為強化聚丁烯對苯二甲酸酯機械性質影響之探討,”中央大學機械工程研究所博士論文,2004.
  18. 16.王晴遠,“高分子熔膠於彈臂搭接處之射出成形與分子配向性之分析,”台灣科技大學機械工程系碩士論文,2010.
  19. 17.韋仁旌,“以熱處理方式消除射出成型製品殘留應力之研究,”交通大學機械工程學系碩士論文,2008.
Times Cited
  1. 廖智昇(2014)。ABS添加回收料對溫濕度的韌性研究。臺北科技大學製造科技研究所學位論文。2014。1-61。 
  2. 陳彥志(2013)。環境的溫濕度變化對ABS添加次料之研究。臺北科技大學製造科技研究所學位論文。2013。1-66。