Title

高錳含量Mn-Ni-Sn-X (X=C、Si、Ge及Co)鐵磁形狀記憶合金磁卡效應之研究

Translated Titles

Magnetocaloric Effect in High Mn Content Mn-Ni-Sn-X (X=C, Si, Ge and Co) Ferromagnetic Shape Memory Alloys

Authors

袁如慧

Key Words

磁卡效應 ; Magnetocaloric Effect

PublicationName

中正大學物理學系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

張文成

Content Language

繁體中文

Chinese Abstract

Ni-Mn-X (X=In、Sn及Sb) 鐵磁形狀記憶合金在外加磁場中變溫時,發生馬氏體結構相變與磁相變耦合(即一級相變),導致許多有趣的物理現象,如巨磁卡效應、磁致應變效應、巨磁阻效應及交換偏壓等,近年來備受矚目。一級相變材料由於在相變溫度處磁化強度隨溫度陡峭變化,按照Maxwell關係必有大的等溫磁熵變。因此,本論文研究了一級相變材料之高Mn含量Mn-Ni-Sn系列鐵磁形狀記憶合金,探討成分變化對其相變溫度和磁卡效應的影響。 首先,藉由改變Mn-Ni-Sn三元之間成分,來尋找擁有最大磁熵變∆SMmax.之最佳成份。研究顯示,當薄帶成分區間在Mn50-xNi40+xSn10 (x=0, 1, 2, 3)、Mn49Ni40.75+xSn10.25-x (x=0, 0.25, 0.5, 0.75)、Mn48+xNi41Sn11-x (x=0.75, 1, 1.25, 1.5)時有良好的巨磁卡效應。而最佳磁卡特性出現於Mn49Ni41Sn10,其逆馬氏體相變溫度TM = 239.7 K及最大磁熵變ΔSMmax.=15.8 J/kg•K。 第二部分,添加第四元素C及用Si、Ge替代Mn49Ni41Sn10中的Sn,探討相同鹵素族元素添加對其TM及磁卡效應的影響。實驗結果發現,由於產生析出相而阻礙逆馬氏體相變,使得合金薄帶之ΔSMmax.大幅衰退。因此,再進一步研究鐵磁性過渡元素Co去置換Mn對Mn49-xCoxNi41Sn10 (x=0, 0.5, 1, 1.5, 2, 3, 4)薄帶磁卡效應之影響。實驗結果顯示隨Co添加量x≥1.5時,奧氏體相的鐵磁性獲得提升,而改善了TM溫度附近馬氏體與奧氏體之間的磁化量差(∆M),因此可以在不同應用溫區中獲得平均磁熵變為12.5 J/kg•K的優異磁卡特性。

English Abstract

Ni-Mn-X (X=In, Sn and Sb) ferromagnetic shape memory alloys (FSMAs) have attracted significant attention due to their interesting physical properties, such as large magnetic-field-induced strain, giant magnetocaloric effects (MCEs), large magnetoresistance (MR), and exchange bias (EB). These properties make them promising for various practical applications in the field of smart, magnetic refrigeration materials and spintronics. In this study, the effect of composition on martensitic transformation temperature (TM) and magnetocaloric property of Mn-based Mn-Ni-Sn alloy ribbons have been reported. At first, for Mn-based Mn-Ni-Sn alloy ribbons, the large ΔSMmax values are only found in a limited composition region. In order to obtain the optimal MCE property, the composition modification of Mn-Ni-Sn ternary alloy is nessessary. The experimental results show that the composition of Mn50-xNi40+xSn10 (x=0, 1, 2, 3), Mn49Ni40.75+xSn10.25-x (x=0, 0.25, 0.5, 0.75), Mn48+xNi41Sn11-x (x=0.75, 1, 1.25, 1.5) can exhibit excellent MCE properties. The optimal MCE properties of ΔSMmax=15.8 J/kg•K and TM=239.7 K are observed in Mn49Ni41Sn10 ribbons. Secondly, the effects of C, Si and Ge substitution for Sn on phase transformations and MCE properties of Mn49Ni41Sn10-xXx (X=C, Si, Ge;x=0-2) alloy ribbons have also been investigated. It can be found that some impurities, forming an additional phase in the ribbons, which decrease the ΔSMmax values of the ribbons due to the suppression of the martensitic transformation. Furthermore, the effect of magnetic Co substitution for Mn on phase transformations and MCE properties of Mn49-xCoxNi41Sn10 (x=0-4) ribbons is also studied. The erromagnetic behavior of austenite is improved with incresing Co content originated from the enhancement of ferromagnetic exchange interaction. As a result, the magnetization difference (∆M) from martensitic to austenite is also enhanced. An average ΔSMmax value of 12.5 J/kg•K is easily obtained in different operation temperature region.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系
Reference
  1. 1. E. Warburg, Ann. Phys. (Leipzig) 13, 141 (1881).
    連結:
  2. 2. P. Langevin, Ann. Chim. Phys 5 (1905).
    連結:
  3. 4. P. Debye, Ann. Phys. (Leipzig) 81 (1926).
    連結:
  4. 9. P. E. Brommer and J. J. M. Franse, Ferromagnetic Materials, edited by K. H. J. Buschow (Elsevier, New York) 5, 323-396 (1990).
    連結:
  5. 10. Z. Han, Z. Hua, D. H. Wang, C. L. Zhang, B. Gu and Y. W. Du, J. Magn. Magn. Mater 302, 119-112 (2006).
    連結:
  6. 11. A. M. Tishin, Handbook of Magnetic Materials 12.
    連結:
  7. 12. T. Hashimoto, T. Numasawa, M. Shino and T. Okada, Cryogenics 21 (11), 647-653 (1981).
    連結:
  8. 22. N. T. Trung, V. Biharie, L. Zhang, L. Caron, K. H. J. Buschow and E. Brück, Appl. Phys. Lett. 96, 162507 (2010).
    連結:
  9. 34. Z. D. Han, D. H. Wang, C. L. Zhang, H. C. Xuan, B. X. Gu and Y. W. Du, Appl. Phys. Lett. 90 (2007).
    連結:
  10. 35. H. C. Xuan, Q. Q. Cao, C. L. Zhang, S. C. Ma, S. Y. Chen, D. H. Wang and Y. W. Du, Applied Physics Letters 96 (20), - (2010).
    連結:
  11. 41. F. X. Hu, G. J. Wang, J. Wang, Z. G. Sun, C. Dong, H. Chen, X. X. Zhang, J. R. Sun, Z. H. Cheng and B. G. Shen, J. Appl. Phys. 91, 7836 (2002).
    連結:
  12. 46. A. Olander, J. Am. Chem. Soc. 56, 3819 (1932).
    連結:
  13. 51. Z. H. Liu, M. Zhang, Y. T. Cui, Y. Q. Zhou, W. H. Wang, G. H. Wu, X. X. Zhang and G. Xiao, Applied Physics Letters 82 (3), 424-426 (2003).
    連結:
  14. 55. W. H. Wang, G. H. Wu, J. L. Chen, C. H. Yu, S. X. Gao, W. S. Zhan, Z. Wang, Z. Y. Gao, Y. F. Zheng and L. C. Zhao, Applied Physics Letters 77 (20), 3245-3247 (2000).
    連結:
  15. 57. Z. D. Han, D. H. Wang, C. L. Zhang, S. L. Tang, B. X. Gu and Y. W. Du, Applied Physics Letters 89 (18), - (2006).
    連結:
  16. 64. Z. D. Han, D. H. Wang, C. L. Zhang, H. C. Xuan, B. X. Gu and Y. W. Du, Applied Physics Letters 90 (4), 042507 (2007).
    連結:
  17. 70. A. J. P. Meyer and P. Taglang, J. Phys. Radium 14 (1953).
    連結:
  18. 76. V. K. Pecharsky and J. K. A. Gschneidner, Advances in Cryogenic Engineering 42 (1996).
    連結:
  19. 77. P. J. von Ranke, I. G. de Oliveira, A. P. Guimarães and X. A. da Silva, Physical Review B 61 (1), 447-450 (2000).
    連結:
  20. 85. B. Fultz and J. M. Howe, “Transmission Electron Microscopy and Diffractometry of Materials”, Springer (2002).
    連結:
  21. 87. Z. D. Han, D. H. Wang, C. L. Zhang, H. C. Xuan, B. X. Gu and Y. W. Du, Applied Physics Letters 90 (4), - (2007).
    連結:
  22. 89. A. Ghosh and K. Mandal, Journal of Physics D: Applied Physics 46 (43), 435001 (2013).
    連結:
  23. 90. Y. Zhang, J. Liu, Q. Zheng, J. Zhang, W. Xia, J. Du and A. Yan, Scripta Materialia 75 (0), 26-29 (2014).
    連結:
  24. 94. X. G. Zhao, C. C. Hsieh, W. C. Chang, W. Liu and Z. D. Zhang, Journal of Physics: Conference Series 266 (1), 012128 (2011).
    連結:
  25. 96. Z. Han, J. Chen, B. Qian, P. Zhang, X. Jiang, D. Wang and Y. Du, Scripta Materialia 66 (2), 121-124 (2012).
    連結:
  26. 98. H. C. Xuan, K. X. Xie, D. H. Wang, Z. D. Han, C. L. Zhang, B. X. Gu and Y. W. Du, Applied Physics Letters 92 (24), - (2008).
    連結:
  27. 99. B. L. Ahuja, D. Alpa, N. L. Heda, K. R. Priolkar, L. Vadkhiya, M. Itou, L. Nelson, Y. Sakurai, C. Aparna, S. Sanjay and S. R. Barman, Journal of Physics: Condensed Matter 22 (44), 446001 (2010).
    連結:
  28. 101. S. Singh, R. Rawat, S. E. Muthu, S. W. D’Souza, E. Suard, A. Senyshyn, S. Banik, P. Rajput, S. Bhardwaj, A. M. Awasthi, R. Ranjan, S. Arumugam, D. L. Schlagel, T. A. Lograsso, A. Chakrabarti and S. R. Barman, Physical Review Letters 109 (24), 246601 (2012).
    連結:
  29. 3. P. Weiss and A. Piccard, Compt. Rend 166 (1918).
  30. 5. W. F. Giauque, Journal of the American Chemical Society 49 (8), 1864-1870 (1927).
  31. 6. W. F. Giauque and D. P. MacDougall, Phys. Rev. 43 (1933).
  32. 7. G. V. Brown, Journal of Applied Physics 47 (8), 3673-3680 (1976).
  33. 8. 葉佳錞, 國立中正大學碩士論文 (2008).
  34. 13. X. X. Zhang, J. Tejada, Y. Xin, G. F. Sun, K. W. Wong and X. Bohigas, Applied Physics Letters 69 (23), 3596-3598 (1996).
  35. 14. Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding and D. Feng, Physical Review Letters 78 (6), 1142-1145 (1997).
  36. 15. V. K. Pecharsky and J. K. A. Gschneidner, Physical Review Letters 78 (23), 4494-4497 (1997).
  37. 16. F.-x. Hu, B.-g. Shen and J.-r. Sun, Applied Physics Letters 76 (23), 3460-3462 (2000).
  38. 17. S. Fujieda, A. Fujita and K. Fukamichi, Applied Physics Letters 81 (7), 1276-1278 (2002).
  39. 18. F.-x. Hu, B.-g. Shen, J.-r. Sun, G.-j. Wang and Z.-h. Cheng, Applied Physics Letters 80 (5), 826-828 (2002).
  40. 19. O. Tegus, E. Bruck, K. H. J. Buschow and F. R. de Boer, Nature 415 (6868) (2002).
  41. 20. V. Franco, C. F. Conde, J. S. Blázquez, A. Conde, P. Švec, D. Janičkovič and L. F. Kiss, Journal of Applied Physics 101 (9), - (2007).
  42. 21. V. Franco, C. F. Conde, J. S. Blázquez, M. Millán and A. Conde, Journal of Applied Physics 102 (1), - (2007).
  43. 23. V. K. Pecharsky and K. A. Gschneidner, Applied Physics Letters 70 (24), 3299-3301 (1997).
  44. 24. L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P. A. Algarabel, M. R. Ibarra and J. Kamarad, Physical Review Letters 93 (13), 137201 (2004).
  45. 25. K. A. Gschneidner Jr, V. K. Pecharsky, A. O. Pecharsky, V. V. Ivtchenko and E. M. Levin, Journal of Alloys and Compounds 303–304 (0), 214-222 (2000).
  46. 26. E. M. Levin, V. K. Pecharsky, K. A. Gschneidner Jr and P. Tomlinson, Journal of Magnetism and Magnetic Materials 210 (1–3), 181-188 (2000).
  47. 27. L. Morellon, J. Blasco, P. A. Algarabel and M. R. Ibarra, Physical Review B 62 (2), 1022-1026 (2000).
  48. 28. H. Wada and Y. Tanabe, Applied Physics Letters 79 (20), 3302-3304 (2001).
  49. 29. A. de Campos, D. L. Rocco, A. M. G. Carvalho, L. Caron, A. A. Coelho, S. Gama, L. M. da Silva, F. C. G. Gandra, A. O. dos Santos, L. P. Cardoso, P. J. von Ranke and N. A. de Oliveira, Nature Materials 5 (10) (2006).
  50. 30. G. J. Liu, J. R. Sun, J. Shen, B. Gao, H. W. Zhang, F. X. Hu and B. G. Shen, Appl. Phys. Lett. 90, 032507 (2007).
  51. 31. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).
  52. 32. R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami and T. Kanomata, Applied Physics Letters 88 (19), - (2006).
  53. 33. S. Y. Yu, L. Ma, G. D. Liu, Z. H. Liu, J. L. Chen, Z. X. Cao, G. H. Wu, B. Zhang and X. X. Zhang, Applied Physics Letters 90 (24), - (2007).
  54. 36. F.-x. Hu, B.-g. Shen, J.-r. Sun, Z.-h. Cheng, G.-h. Rao and X.-x. Zhang, Applied Physics Letters 78 (23), 3675-3677 (2001).
  55. 37. J. D. Zou, B. G. Shen, B. Gao, J. Shen and J. R. Sun, Adv. Mater. 21, 693 (2009).
  56. 38. F. X. Hu, B. G. Shen, J. R. Sun, G. J. Wang and Z. H. Cheng, Appl. Phys. Lett. 80, 826 (2002).
  57. 39. F. X. Hu, B. G. Shen, J. R. Sun and Z. H. Cheng, Phys. Rev. B 64, 012409 (2001).
  58. 40. J. L. Zhao, J. Shen, B. G. Shen, F. X. Hu and J. R. Sun, Solid State Commun. 150, 2329 (2010).
  59. 42. S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki and Y. Iijima, Applied Physics Letters 79 (5), 653-655 (2001).
  60. 43. N. T. Trung, Z. Q. Ou, T. J. Gortenmulder, O. Tegus, K. H. J. Buschow and E. Brück, Appl. Phys. Lett. 94, 102513 (2009).
  61. 44. D. T. C. Thanh, E. Brück, N. T. Trung, J. C. P. Klaasse, K. H. J. Buschow, Z. Q. Ou, O. Tegus and l. cARON, J. Appl. Phys. 103, 07B318 (2008).
  62. 45. D. M. Liu, M. Yue, J. X. Zhang, T. M. McQueen, J. W. Lynn, X. L. Wang, Y. Chen, J. Y. Li, R. J. Cava, X. B. Liu, Z. Altounian and Q. Huang, Phys. Rev. B 79, 014435 (2009).
  63. 47. W. J. Buehler, J. Grifrich and K. C. Wiley, J. Appl. Phys. 34, 1467 (1963).
  64. 48. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley and V. V. Kokorin, Applied Physics Letters 69 (13), 1966-1968 (1996).
  65. 49. A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma and K. Ishida, Applied Physics Letters 77 (19), 3054-3056 (2000).
  66. 50. K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma and K. Ishida, Applied Physics Letters 79 (20), 3290-3292 (2001).
  67. 52. M. Wuttig, J. Li and C. Craciunescu, Scripta Materialia 44 (10), 2393-2397 (2001).
  68. 53. Y. Furuya, N. W. Hagood, H. Kimura and T. Watanabe, Mater. Trans., JIM 39, 1248 (1998).
  69. 54. T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima and S. Muto, Applied Physics Letters 77 (10), 1502-1504 (2000).
  70. 56. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida and K. Oikawa, Applied Physics Letters 85 (19), 4358-4360 (2004).
  71. 58. S. Y. Yu, Z. H. Liu, G. D. Liu, J. L. Chen, Z. X. Cao, G. H. Wu, B. Zhang and X. X. Zhang, Applied Physics Letters 89 (16), - (2006).
  72. 59. K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa and K. Ishida, Applied Physics Letters 89 (18), - (2006).
  73. 60. B. Hernando, J. L. Sánchez Llamazares, V. M. Prida, D. Baldomir, D. Serantes, M. Ilyn and J. González, Applied Physics Letters 94 (22), - (2009).
  74. 61. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa and A. Planes, Physical Review B 72 (1), 014412 (2005).
  75. 62. K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa and K. Ishida, Applied Physics Letters 89 (18), 182510 (2006).
  76. 63. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa and A. Planes, Nature Materials 4, 450 (2005).
  77. 65. 陳翔竣, 國立中正大學碩士論文 (2010).
  78. 66. 磁性紀錄手冊 (2002).
  79. 67. 李翊豪, 國立中正大學碩士論文 (2011).
  80. 68. V. K. Pecharsky, K. A. Gschneidner, A. O. Pecharsky and A. M. Tishin, Physical Review B 64 (14), 144406 (2001).
  81. 69. 軒海成, 南京大學碩士論文 (2009).
  82. 71. J. R. Sun, F. X. Hu and B. G. Shen, Physical Review Letters 85 (19), 4191-4191 (2000).
  83. 72. M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso and D. Schlagel, Physical Review B 72 (9), 094435 (2005).
  84. 73. J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle and A. Labarta, Physical Review B 68 (9), 094401 (2003).
  85. 74. P. Antoni, M. Lluís and A. Mehmet, Journal of Physics: Condensed Matter 21 (23), 233201 (2009).
  86. 75. S. A. A. Nikitin, A.S.; Tishin, A.M.; Arkharov, A.M.; Zherdev, A.A, The Physics of Metals and Metallography 59 (1985).
  87. 78. P. J. v. Ranke, N. A. d. Oliveira, M. V. T. Costa, E. P. Nobrega, A. Caldas and I. G. d. Oliveira, J. Magn. Magn. Mater. 226, 970 (2001).
  88. 79. T. Hashimoto, T. Kuzuhara, M. Sahashi, K. Inomata, A. Tomokiyo and A. Tayama, J. Appl. Phys. 62, 3873-3878 (1987).
  89. 80. H. Takeya, V. K. Pecharsky, K. A. G. Jr and J. O. Moorman, Appl. Phys. Lett. 64, 2739-2741 (1994).
  90. 81. J. A. Barclay, W. C. O. Jr and C. B. Zimm., Contributed Papers, Elsevier Science, Amsterdam. 157 (1984).
  91. 82. 鮑雨梅 and 張康達, 磁致冷技術手冊 (2006).
  92. 83. 張正武, 國立中正大學博士論文 (2008).
  93. 84. 廖名進, 國立中正大學碩士論文 (2014).
  94. 86. H. C. Xuan, Y. X. Zheng, S. C. Ma, Q. Q. Cao, D. H. Wang and Y. W. Du, Journal of Applied Physics 108 (10), - (2010).
  95. 88. H. C. Xuan, S. C. Ma, Q. Q. Cao, D. H. Wang and Y. W. Du, Journal of Alloys and Compounds 509 (19), 5761-5764 (2011).
  96. 91. Z. Xinguo, L. Bo, H. Chih-Chieh, C. Wen-Cheng, L. Wei and Z. Zhidong, Magnetics, IEEE Transactions on 48 (11), 3742-3745 (2012).
  97. 92. S. E. Muthu, S. Singh, R. Thiyagarajan, G. K. Selvan, N. V. R. Rao, M. M. Raja and S. Arumugam, Journal of Physics D: Applied Physics 46 (20), 205001 (2013).
  98. 93. Z. Xinguo, Y. Jianlin, W. Xianwei, H. Chih-Chieh, C. Wen-Cheng, L. Wei and Z. Zhidong, Magnetics, IEEE Transactions on 47 (10), 2455-2458 (2011).
  99. 95. H. C. Xuan, P. D. Han, D. H. Wang and Y. W. Du, Journal of Alloys and Compounds 582 (0), 369-373 (2014).
  100. 97. J. Liu, N. Scheerbaum, J. Lyubina and O. Gutfleisch, Applied Physics Letters 93 (10), - (2008).
  101. 100. S. Singh, M. Maniraj, S. W. D’Souza, R. Ranjan and S. R. Barman, Applied Physics Letters 96 (8), - (2010).
  102. 102. S. E. Muthu, S. Sanjay, R. Thiyagarajan, G. K. Selvan, N. V. R. Rao, M. M. Raja and S. Arumugam, Journal of Physics D: Applied Physics 46 (20), 205001 (2013).
  103. 103. J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore and O. Gutfleisch, Nature Materials 11, 620–626 (2012).