Title

修飾奈米金粒子之三維高分子立體結構之表面增強拉曼光譜研究

Translated Titles

The Studies of Surface Enhanced Raman Scattering Spectrum Based Three-Dimensional Polymeric Structures Decorated With Dold Nanoparticles

Authors

蔡鈺雯

Key Words

三維立體結構 ; 拉曼光譜 ; 表面增強拉曼散射 ; 奈米金 ; gold nanoparticles ; Raman Spectrum ; SERS

PublicationName

中正大學物理學系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

許佳振

Content Language

繁體中文

Chinese Abstract

拉曼光譜是研究分子結構的重要工具,但因為訊號微弱,所以在應用上受到很大的限制。故利用金屬奈米粒子與表面結構的電場強化,來增強拉曼散射訊號就成了主要的研究方向。 本論文中,利用雙光束干涉技術,藉由堆疊多層一維週期性結構去製作出三維立體結構,並利用化學修飾法,將奈米金粒子均勻修飾於三維立體結構上。藉由三維結構的骨架,可以大幅增加奈米金粒子之單位體積密度,並可有效提升表面增強拉曼散射(surface enhanced Raman scattering,SERS)光譜訊號。此種有修飾奈米金粒子之三維立體結構可作為SERS基板,其主要影響因素是奈米金粒子密度改變進而提升SERS訊號,故可加以改善結構使訊號更良好。

English Abstract

Raman spectroscopy is an important tool for biomolecular structures analysis. However because of the Raman signal is very weak, it faces a great challenge for particle application. So it is a main way to enhance Raman signal with the helps of metal nanoparticles and surface structures to enhance the electric field. This work, we demonstrate a novel structure of surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles decorated 3-dimensinal (3D) periodic structure frame fabricated by holographically assembling multiple one-dimensional structure. Two-beam interference technique was employed to create a 3D periodic structure frame by assembling layer-by-layer one-dimensional periodic structure, and the chemical decoration method was used to decorate gold nanoparticles on the surface of this frame. SERS signals can be improved by using this novel substrate. The reason is caused from an increase of the number density of Au nanoparticles.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系
Reference
  1. transform Raman spectroscopy in the near infrared.”Chem.Phys.Lett. 149, 2,123-127 (1988)
    連結:
  2. [2] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, ”Single molecule detection using surface-enhanced Raman scattering(SERS).” Phys. Rev. Lett. 78, 1667 (1997)
    連結:
  3. scattering of small molecules from silver-coaterd silion nanopores. ” Adv. Mater.
    連結:
  4. 19, 1595-1598 (2003)
    連結:
  5. [4] L. D. Tuyen, A. C. Liu, C. C. Huang, P. C. Tsai, J. H. Lin, C. W. Wu, L. K. Chau,
    連結:
  6. surface-enhanced Raman scattering on gold nanorod decorated inverse opal
    連結:
  7. photonic crystals.“Opt. Express 20,29266-29275 (2012)
    連結:
  8. [5] C. Y. Wu, C. C. Huang, J. S. Jhang, A. C. Liu, C. C. Chiang, M. L. Hsieh, P. J. Huang, L.
    連結:
  9. surface-enhanced Raman scattering substrate from gold nanoparticle and photonic
    連結:
  10. 21522-21529 (2009)
    連結:
  11. [6] Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, ”Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations.” Phys .chem. c.114, 8176-8183 (2010)
    連結:
  12. [7] J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “Holographic
    連結:
  13. three-dimensional polymeric photonic crystals operating in the 1550 nm window.”
    連結:
  14. Appl. Phys. Lett. 90, 093102-093102-3 (2007)
    連結:
  15. [9] N. D. Lai, T. S. Zheng, D. B. Do, J. H. Lin, C. C. Hsu “Fabrication of desired
    連結:
  16. three-dimensional structures by holographic assembly technique.”Appl. Phys. A, 25,171-175 (2010)
    連結:
  17. [11] N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique.”, Opt. Express 13, 9605-9611 (2005)
    連結:
  18. [12] 梁文評, “Fabrication of two- and three-dimensional photonic crystals
    連結:
  19. [13] 邱國斌、蔡定平 “金屬表面電漿簡介” 物理雙月刊28, 472-485 (2006)
    連結:
  20. [14] 吳民耀、劉威志 “表面電漿子理論與模擬” 物理雙月刊28, 486-496 (2006)
    連結:
  21. [15] R. J. Stockermans, and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38, 3714 (1999).
    連結:
  22. keratinylytica 76T-1 and degradation of polycaprolactone by streptomyces
    連結:
  23. [17] 黃育民,“利用拉曼和表面增強拉曼光譜技術研究直線型五核金屬串錯合物-四-(三吡啶二胺)化五鎳、鈷、鉻雙軸向配位基:雙硫氫基、雙氯基之結構” 國立清華大學化學所碩士論文 (2010)
    連結:
  24. [18] M. Fleischmann, P. J. Hendra, A. J. McQuillan,“Raman spectra of pyridine adsorbed at a silver electrode.” Chem. Phy. Lett .26, 163-166 (1974)
    連結:
  25. Chemical Analysis by Raman Spectroscopy." Chem. Rev. 99, 2957-2975 (1999)
    連結:
  26. [20] J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C.Y. Koh, and E. L. Thomas,“3D micro- and nanostructures via interference lithography.” Adv. Funct. Mater. 17, 3027–3041 (2007)
    連結:
  27. [1] A. Crookell, M. Fleischmann, M. Hanniet, P. J. Hendra,”Surface-enhanced fourier
  28. [3] S. chab, S. Kwon, T. W. Koo, L. P. Lee, and A. Berlin, “Surface-enhance Raman
  29. T. S. Yang, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Doubly resonant
  30. D. Tuyen, L. Q. Minh, T. S. Yang, L. K. Chau, H. C. Kan, and C. C. Hsu, “ Hybrid
  31. crystal: Maneuverability and uniformity of Raman spectra.“ Opt. Express 17,
  32. [8] 林建宏、黃家琪、杜名碧、巫晟逸、楊子萱、周禮君、張天立、林宏彝、
  33. 甘宏志、許佳振 “結合飛秒雷射直寫技術與化學修飾方法製作三維表面
  34. 增強拉曼散射基板” Phys.bimonthly,203-207 (2010)
  35. [10] 巫晟逸, “Fabrication of novel periodic nano(micro) structured thin films for
  36. optical applications based on self-assembly technique.”, 國立中正大學物理研究
  37. 所博士學位論文(2009)
  38. with defect by combining multiple-exposure of two-beam interference and multi-photon polymerization.”, 國立中正大學機電光整合研究所碩士論文 (2005).
  39. [16] 李維烈,“Micro-Raman study of degradation of poly-l-lactide by actinomadura
  40. thermoviolaceus subsp. thermoviolaceus strain 76T-2“, 天主教
  41. 輔仁大學物理學系碩士論文(2012)
  42. [19] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and .S. Feld, "Ultrasensitive