Title

灰局勢決策對粒子群優法因子在類水筒模式上之應用

Translated Titles

Particle Swarm Optimization Factors Evaluation in Para-tank Model Using Grey Decision-Making Method

Authors

許博淵

Key Words

類水筒模式 ; 粒子群優法 ; 灰色系統 ; 灰局勢決策 ; 最佳化 ; Para-tank model ; particle swarm optimization ; gray system theory ; gray situation decision-making ; optimization

PublicationName

屏東科技大學土木工程系所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

博士

Advisor

葉一隆

Content Language

繁體中文

Chinese Abstract

本研究以水筒模式行為機制的概念為出發點,對於都市不透水層比例較高的情形下,將原有的四段水筒所組成的基本型式變換成地表上及地面下二種機制的組合體,地表上採用類似水筒的概念建立降雨後產生逕流的行為機制,在產生漫地流後進入地面下的下水道系統中模擬,遂成為新的降雨-逕流模式,因架構在水筒模式的基礎上,故取名為類水筒模式(Para-Tank Model, PTM)。另本研究採用近代受自然界生物群體行為啟發衍生的隨機優化算法-粒子群優法(Particle Swarm Optimization, PSO)尋找入滲及窪蓄之貯蓄高(H1)、下水道系統之貯蓄高(H2)、地形積淹特性流出率(λ1)及下水道承載能力流出率(λ2)等4個參數。在最佳化演算過程中速度方程式有三個因子,即加速常數(Acceleration Constants) c1和c2及慣性權重(Inertia Weight) w等,本文以灰局勢決策(Grey Situation Decision-Making, GSDM)將前述三個因子作為事件,採0.2、0.5、0.8的值為其對策,形成27組局勢集,利用均方根誤差(Root Mean Squared Error, RMSE)、效益係數(Coefficient of Efficiency, CE)、總體積誤差百分比(Percent Error of Total Volume, VER)及流量誤差平方值(Squared Value of Flow Error)等四種目標決策指標做統一測度效果的分析,比較綜合效果測度後,以c1=0.8、c2=0.2、w=0.5時綜合效果測度最高為最佳的決策,成為PSO在尋找類水筒模式參數值時的因子最佳值。

English Abstract

The relationship between rainfall and runoff has been the most important part of hydrological analysis. It is easier to get rainfall than to get runoff; therefore, the methods of calibration analysis regarding their relationship were actively developed in previous research to simulate the runoff mechanisms with rainfall data. In this study, the concept of tank model mechanism serves as a starting point to convert the original basic type of four tank sections into a combination of aboveground and underground mechanisms to address a higher proportion of impermeable layer in cities. A concept similar to a tank is used to establish the operational mechanisms produced after rainfall on the surface. It is simulated in the underground sewer system after overland flow, and therefore, a new rainfall–runoff model is established, called the Para-Tank Model (PTM). The particle swarm optimization (PSO) is employed to calculate the parameter values, including infiltration and depression head, sewer system head, terrain flooding feature outflow rat and sewer carrying capacity outflow rate, required by PTM. We also investigate three factors of the acceleration equation, i.e., acceleration constants c1 and c2 and inertia weight w, which are then used as events in PSO for parameter optimization in PTM during rainfall–runoff simulation. With Grey Situation Decision-Making, the values of 0.2, 0.5, and 0.8 are respectively used to create 27 groups of situation sets using the indices of the four objectives, root mean squared error, coefficient of efficiency, percent error of total volume, and squared value of flow error, in order to analyze the systematic effectiveness. After comparing the comprehensive effect measures, an optimal decision is reached when the combined effectiveness was at the highest when c1 = 0.8, c2 = 0.2, and w = 0.5 and becomes the optimal parameter value for the PTM.

Topic Category 工學院 > 土木工程系所
工程學 > 土木與建築工程
Reference
  1. [10] Nelder, J. A., and Mead, R., 1965, “A Simplex Method for Function Minimization,” The Computer Journal, Vol. 7, No. 4, pp. 308-313.
    連結:
  2. [12] Powell, M. J. D., 1964, “An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives,” The Computer Journal, Vol. 7, No. 2, pp. 155-162.
    連結:
  3. [18] Duan, Q., Sorooshian, S., and Gupta, V.K., 1992, “Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models,” Water Resources Research, Vol. 28, No. 4, pp. 1015-1061.
    連結:
  4. [19] Sorooshian, S., Duan, Q., and Gupta, V.K., 1993, “Calibration of Rainfall-Runoff Models: Global Optimization to the Sacramento Soil Moisture Accounting Models,” Water Resources Research, Vol. 29, No. 4, pp. 1085-1194.
    連結:
  5. [20] Holland, J., 1975, Adaptation in Natural and Artificial System, MIT press/ bradford books edition, 211 pages.
    連結:
  6. [21] Duan, Q., Sorooshian, S., and Gupta, V.K., 1994, “Optimization Use of the SCE-UA Global Optimization Method for Calibrating Watershed Models,” Journal of Hydrology, Vol. 158, pp. 265-384.
    連結:
  7. [27] Kennedy, J., and Eberhart, R. C., 1997, “A Discrete Binary Version of the Particle Swarm Algorithm,” Proceedings IEEE International Conference on Systems, Man, and Cybernetics of Computational Cybernetics and Simulation, Vol. 5, pp. 4104-4109.
    連結:
  8. [31] Chen, A. L., Yang, G. K., and Wu, Z, M., 2006, “Hybrid Discrete Partimization Swarm Optimization Algorithm for Capacited Vehicle Routing Problem,” Journal of Zhejiang University (A), Vol. 7, No. 4, pp. 607-614.
    連結:
  9. [32] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,E., 1953, “Equations of State Calculations by Fast Computing machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087-1092.
    連結:
  10. [38] Das, S., Abraham, A., and Konar, A., 2008, “Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives”, Advances of Computational Intelligence in Industrial Systems, Studies in Computational Intelligence, pp. 1-38.
    連結:
  11. [39] KA, Y. T., and Erwie, Z., 2008, “A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions,” Journal Applied Soft Computing, Vol. 8, No. 2, pp. 849-857.
    連結:
  12. [41] Shelokar, P., Siarry, P., Valadi, J., and Kulkarni, B. D., 2007, “Particle Swarm and Colony Algorithms Hybridized for Improved Continuous Optimization,” Applied Mathematics and Computation, Vol. 8, pp. 129-142.
    連結:
  13. [43] Bharathi, R.S., and Baskar, N., 2010, “Optimization Techniques for Machining Operations: A Retrospective Research Based on Various Mathematical Models,” International Journal of Advanced Manufacturing Technology, Vol. 48, No. 9-12, pp. 1075-1090.
    連結:
  14. [44] Farahnakian, M., Razfar, M.R., Moghri, M., and Asadnia, M., 2011, “The Selection of Milling Parameters by the PSO-based Neural Network Modeling Method,” International Journal of Advanced Manufacturing Technology, Vol. 57, No.1-4, pp.49-60.
    連結:
  15. [45] Yang, W., Guo, Y., and Liao, W., 2011, “Optimization of Multi-pass Face Milling Using a Fuzzy Particle Swarm Optimization Algorithm,” International Journal of Advanced Manufacturing Technology, Vol. 54, No. 1-4, pp. 45-57.
    連結:
  16. [46] Costa, A., Celano, G., and Fichera, S., 2011, “Optimization of Multi-pass Turning Economies Through a Hybrid Particle Swarm Optimization Technique,” International Journal of Advanced Manufacturing Technology, Vol. 53, No.5-8, pp421-433.
    連結:
  17. [51] Rao, R. V., and Pawar, P. J., 2010, “Parameter Optimization of A Multi-pass Milling Process Using Non-traditional Optimization Algorithms,” Applied Soft Computing, Vol. 10, No.2, pp. 445-456.
    連結:
  18. [53] Escamilla, I., Perez, P., Torres, L., Zambrano, P., and Gonzalez, B., 2009, “Optimization Using Neural Network Modeling and Swarm Intelligence in the Machining of Titanium (Ti 6AI 4V) Alloy,” The 8th Mexican International Conference on Artificial Intelligence - Proceedings of the Special Session, MICAI 2009, pp. 33-38.
    連結:
  19. [54] Ciurana, J., Arias, G., and Ozel, T., 2009, “Neural Network Modeling and Particle Swarm Optimization (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13 Steel,” Materials and Manufacturing Processes, Vol. 24, No. 3, pp. 358-368.
    連結:
  20. [55] Prakasvudhisarn, C., Kunnapapdeelert, S., and Yenradee, P., 2009, “Optimal Cutting Condition Determination for Desired Surface Roughness in End Milling,” International Journal of Advanced Manufacturing Technology, Vol. 41, No. 5-6, pp. 440-451.
    連結:
  21. [56] Srinivas, J., Giri, R., and Yang, S., 2009, “Optimization of Multi-pass Turning Using Particle Swarm Intelligence,” International Journal of Advanced Manufacturing Technology, Vol. 40, No.1-2, pp. 56-66.
    連結:
  22. [57] Rao, R. V., Pawar, P. J., and Shankar, R., 2008, “Multi-objective Optimization of Electrochemical Machining Process Parameters Using a Particle Swarm Optimization Algorithm,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 222, No. 8, pp. 949-958.
    連結:
  23. [58] Li, J. G., Yao, Y. X., Gao, D., Liu, C. Q., and Yuan, Z. J., 2008, “Cutting Parameters Optimization by Using Particle Swarm Optimization (PSO),” Applied Mechanics and Materials, Vol. 10-12, pp. 879-883.
    連結:
  24. [59] Duran, O., Rodriguez, R., and Consalter, L. A., 2008, “PSO for Selecting Cutting Tools Geometry,” Lecture Notes in Computer Science, Vol. 5271, pp. 265-272.
    連結:
  25. [61] Zhao, H., Li, J. G., Yao, Y. X, and Liu, C. Q., 2008, “Cutting Parameters Optimization for Constant Cutting Force in Milling,” Applied Mechanics and Materials, Vol. 483, pp. 10-12.
    連結:
  26. [63] Tang, L., Landers, R. G., and Balakrishnan, S. N., 2008, “Parallel Turning Process Parameter Optimization Based on A Novel Heuristic Approach,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 30, No. 3, pp. 354-368.
    連結:
  27. [66] Bekele, E.G. and Nicklow, J.W., 2005, “Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization,” American Geophysical Union Fall Meeting, San Francisco, CA, pp. 5-9.
    連結:
  28. [67] Gill, M. K., Kaheil, Y. H., Khalil, A., McKee, and M., Bastidas, L., 2006, “Multiobjective Particle Swarm Optimization for Parameter Estimation in Hydrology,” Water Resources Research, Vol. 42, Paper No. W07417, 14 pages.
    連結:
  29. [70] Chou C. M., 2012, “Particle Swarm Optimization for Identifying Rainfall-Runoff Relationships,” Journal of Water Resource and Protection, Vol. 4, No. 3, pp. 115-126.
    連結:
  30. [71] Jakubcova, M., Maca, P., and Pech, P., 2015, “Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm,”in Mathematical Problems in Engineering, Article ID 968067, 13 pages, Hindawi Publishing Corporation.
    連結:
  31. [72] Deng, J. L., 1982, "Control Problems of Grey Systems," Systems & Control Letters, Vol. 1, No. 5, pp. 288-294.
    連結:
  32. [74] Cao, L. W., Cheng, Y. H., Zhang, J., Zhou, X. Z. and Lian, C.X., 2006, “Application of Grey Situation Decision-Making Theory in Site Selection of a Waste Sanitary Landfill,” Journal of China University of Mining and Technology, Vol. 16, No. 4, pp. 393-398.
    連結:
  33. [83] Shi, Y., and Eberhart, R. C., 2000, “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization,” Proceedings of the 2000 Congress on Evolutionary Computation, Vol. 1, pp.84-88.
    連結:
  34. [84] Suganthan, P., 1999, “Particle Swarm Optimiser with Neighbourhood Operator,” Proceeddings of the Congress on Evolutionary Computation, Vol. 3, pp. 1958-1962.
    連結:
  35. [85] Ratnaweera, A., Halgamuge, S., and Watson, H. C., 2004, “Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients,” IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 240-255.
    連結:
  36. [86] Shi, Y., and Eberhart, R. C., 1998, “Parameter Selection in Particle Swarm Optimization,” Vol. 1447, pp. 591-600.
    連結:
  37. [87] Kennedy, J., 1999, “Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1931-1938.
    連結:
  38. [91] Trelea, I. C., 2003, “The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection,” Vol. 85, No. 6, pp. 317-325.
    連結:
  39. [1] 許晃雄,吳宜昭,周佳,陳正達,陳永明,盧孟明,2011,「臺灣氣候變遷科學報告2011」,國家災害防救科技中心,361頁。
  40. [2] 管原正巳,1972,流出解析法,日本共立株式會社,269頁。
  41. [3] 趙啟迪,1987,長期降雨逕流模式應用於曾文溪流域乾涸特性之研究,碩士論文,國立臺灣大學,台北,101頁。
  42. [4] 王如意,李光敦,1987,「淡水河問題研究-石門水庫上游集水區逕流模式之建立與驗證」,行政院農業委員會研究報告,第76-33號,122頁。
  43. [5] 王如意,譚智宏,1989,「曾文溪左側各集水區適用降雨-逕流模式之建立與驗證」,國科會防災科技研究報告,第77-46號,190頁。
  44. [6] 角屋氏,永井明博,1988,「長短期流出両用モデルの開発改良研究」, 日本農業土木学会論文集,第136號,第31-38頁。
  45. [7] 王如意,譚智宏,1991,「修正水筒模式之研究及其應用於流域逕流量之預測」,台灣水利,第39卷,第3期,第1-23頁。
  46. [8] 劉波,2010,粒子群優化算法及其工程應用,電子工業出版社,北京,128頁。
  47. [9] Kennedy, J., Eberhart, R. C., and Shi, Y., 2001, Swarm Intelligence, Elsevier, 512 pages.
  48. [11] 小林慎太郎,丸山利輔,1976,「Powellの共役方向法によるタンクモデルの定数の探索」,日本農業土木学会論文集,第65號,第42-47頁。
  49. [13] 菅原正巳,尾崎睿子,渡辺一郎,勝山ヨシ子,1977,「タンク・モデルの構造を自動的に定める計算機プログラムの開発(第1報)」, 国立防災科学技術センター研究報告,第17號,第43-89頁。
  50. [14] 菅原正巳,渡辺一郎,尾崎睿子,勝山ヨシ子,1978,「タンク・モデルの構造を自動的に定める計算機プログラムの開発(第2報)」, 国立防災科学技術センター研究報告,第20號,第157-216頁。
  51. [15] 永井明博,角屋睦,1979,「流出モデル定数の最適化手法,京都大學防災研究所年報,第22號(B-2),第209-224頁。
  52. [16] 永井明博,角屋睦,1980,「タンクモデルの最適同定法に関する基礎的検討」,京都大学防災研究所年報,第23號(B-2),第239-247頁。
  53. [17] 田中丸治哉,1995,「タンクモデル定数の大域的探索」,日本農業土木学会論文集,第178號,第103-112頁。
  54. [22] 游保杉,鄭班萩,蔡長泰,1995,「應用全域最佳化技巧於分佈型降雨-逕流模式」,台灣水利,第43卷,第2期,第45-53頁。
  55. [23] 陳榮松,王宇靖,2003,「水筒模式參數自動化率定之研究」,興大工程學刊,第14卷,第1期,第65-75頁。
  56. [24] 陳榮松,謝正晟,畢嵐杰,2003,「水筒模式參數全域最佳化率定之研究」,台灣水利,第51卷,第2期,第34-45頁。
  57. [25] Kennedy, J., Eberhart, R. C., 1995, "Particle Swarm Optimization," Proceedings IEEE International Conference on Neural Networks, Vol. 4, pp. 1942-1948.
  58. [26] Shi, Y., Eberhart, R. C., 1998, "A Modified Particle Swarm Optimizer," Proceedings IEEE International Conference on Evolutionary Computation, pp. 69-73.
  59. [28] 周雅蘭,王甲海,印鑒,2008,「一種基于分布估計的離散粒子群優化算法」,電子學報,第36卷,第6期,第1242-1248頁。
  60. [29] Sun, J., Feng, B., and Xu, W., 2004, “Particle Swarm Optimization with Particle Havinf Quantum Behavior,” IEEE Proceedings of Congress on Evolutionary Computation, Vol. 1, pp. 325-331.
  61. [30] Yang, S., Wang, M., and Jiao, L., 2004, “A Quantum Particle Swarm Optimization,” Proceedings of IEEE Congress on Evolutionary Computation, Vol. 1, pp. 320-324.
  62. [33] 龐巍,王康平,周春光,黃嵐,季曉輝,2005,「模糊離散粒子群優化演算法求解旅行商問題」,小型微型電腦系統,第26卷,第8期,第1331-1334頁。
  63. [34] 葉東毅,廖建坤,2008,「最小約簡問題的一個免疫離散粒子群演算法」,小型微型電腦系統,第29卷,第6期,第1089-1092頁。
  64. [35] Brits, R., Engelbrchta, A. P., and Van Den Bergh, F., 2002, “A Niching Particle Swarm Optimizer,” Proceedings of the Conference on Simulated Evolution And Learning, Vol. 2, pp. 692-696.
  65. [36] 王俊年,申群太,沈洪遠,周鮮成,2005,「一種基于聚類的小生境微粒群算法」,信息與控制,第134卷,第34期,第680-689頁。
  66. [37] 王俊年,申群太,周少武,沈洪遠,2005,「基於種群小生境微粒群演算法的前向神經網路設計」,控制與決策,第20卷,第9期,第 981-985頁。
  67. [40] 高鷹,謝勝利,2004,「基於模擬退火的粒子群優化演算法」,計算機工程與應用,第1期,第47-50頁。
  68. [42] Yusup, N., Zain, A.M., and Hashim, S. Z. M., 2012, “Overview of PSO for Optimizing Process Parameters of Machining,” International Workshop on Information and Electronics Engineering, Vol. 29, pp. 914-923.
  69. [47] Ganesan, H., Mohankumar, G., Ganesan K., and Ramesh Kumar, K., 2011, “Optimization of Machining Parameters in Turning Process Using Genetic Algorithm and Particle Swarm Optimization with Experimental Verfification,” International Journal of Engineering Science and Technology (IJEST), Vol. 3, No.2, pp. 1091-1102.
  70. [48] Razfar, M. R., Asadnia, M., Haghshenas, M., and Farahnakian, M., 2010, “Optimum Surface Roughness Prediction in Face Milling X20Cr13 Using Particle Swarm Optimization Algorithm,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 224, No. 11, pp. 1645-1653.
  71. [49] Zheng, L.Y., and Ponnambalam, S. G., 2010, “Optimization of Multipass Turning Operations Using Particle Swarm Optimization,” International Symposium on Mechatronics and its Applications, pp. 1-6.
  72. [50] Rao, R.V., and Pawar, P.J., 2010, “Grinding Process Parameter Optimization Using Non-traditional Optimization Algorithms,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 224, No. 6, pp. 887-898.
  73. [52] Xi, J., and Liao, G., 2009, “Cutting Parameter Optimization Based on Particle Swarm Optimization,” International Conference on Intelligent Computing Technology and Automation, ICICTA 2009, Vol. 1, pp. 255-258.
  74. [60] Chen, Z., and Li, Y., 2010, “An Improved Particle Swarm Algorithm and its Application in Grinding Process Optimization,” Proceedings of the 2010 Second International Conference on Computer Modeling and Simulation, Vol. 2, .pp. 138-141.
  75. [62] Liu, H., and Huang, W., 2008, “Computer Numerical Control Machining Parameter Optimization Based on Particle Swarm Optimization,” Tongji Daxue Xuebao/Journal of Tongji University, Vol. 36, No. 6, pp. 803-806.
  76. [64] Zuperl, U., Cus, F., and Gecevska, V., 2007, “Optimization of The Characteristic Parameters in Milling Using the PSO Evolution Technique,” Journal of Mechanical Engineering, Vol. 6, pp. 354-368.
  77. [65] Huang, H., Li, A., and Lin, X., 2007, “Application of PSO-based Wavelet Neural Network in Tool Wear Monitoring,” Proceedings of the IEEE International Conference on Automation and Logistics, pp. 2813-2817.
  78. [68] 江燕、胡鐵松、桂發亮,2006,「粒子群算法在新安江模型參數優選中的應用」,武漢大學學報(工學版),第39卷,第4期,第14-17頁。
  79. [69] 陳強、荀思、秦大庸、周祖昊,2010,「一種高效的SWAT模型參數自動率定方法」,水利學報,第41卷,第1期,第113-119頁。
  80. [73] 薛廷河,2000,「灰色系統理論在岩土工程爆破中的應用」,西部探礦工程,第2期,第100-101頁。
  81. [75] Zhang, X.F., and Peng, X. T.,2009, “Application of Gray-Situation Decision to the Investment of Real Estate and Stock,” International Conference on Information Management, Innovation Management and Industrial Engineering, Vol. 2, pp. 46-51.
  82. [76] 吳永裕,2011,「以多目標決策局勢於門禁安全系統評選應用」,產業管理創新研討會,台中,第304-309頁。
  83. [77] 王兵,2015,「灰局勢決策的工業廠房設計方案優選」,內江科技,第36卷,第6期,第34、19頁。
  84. [78] 陳榮松,李柏萱,2006,「修正型水筒模式於都市區域降雨-逕流之研究」,第十五屆水利工程研討會論文集,桃園,第248-254頁。
  85. [79] 李皓鉞,2005,修正型水筒模式於都市區域降雨-逕流之應用及分析,碩士論文,國立中興大學,土木工程學系,台中,80頁。
  86. [80] Colorni, A., Dorigo, M., and Maniezzo, V., 1991, “Distributed Optimization by Ant Colonies,” The First European Conference on Artificial Life, France:Elsevier, pp. 134-142.
  87. [81] 李曉磊,邵之江,錢積新,2002,「一種基于動物自治體的尋優模式:魚群算法」,系統工程理論與實踐,第22卷,第11期,第32-38頁。
  88. [82] Shi, Y., and Eberhart, R. C., 2001, “Fuzzy Adaptive Partticle Swarm Optizimation,” Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 101-106.
  89. [88] Bergh, F., and Engelbrecht, A., 2001, “Effects of Swarm Size on Cooperative Particle Swarm Optimisers,” Proceedings of GECCO-2001, San Francisco, CA, pp. 892-899.
  90. [89] 鄧聚龍,2000,灰色系統理論與應用,高立圖書有限公司,160頁。
  91. [90] 國立成功大學防災研究中心,2001,「高雄市防洪排水檢討規劃」,高雄市政府下水道工程處,91頁。