Title

二氧化鈦奈米顆粒對發育中斑馬魚之行為研究

Translated Titles

Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio)

DOI

10.6346/NPUST.2010.00157

Authors

林純瑤

Key Words

奈米顆粒二氧化鈦 ; 斑馬魚 ; 行為 ; 啶橘染色 ; 氧化緊迫 ; titanium dioxide nanoparticles (TiO2 NP) ; zebrafish ; behavior ; acridine orange (AO) ; oxidative stress

PublicationName

屏東科技大學水產養殖系所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

陳德豪;曾美珍

Content Language

繁體中文

Chinese Abstract

奈米顆粒二氧化鈦是一種新興材料,可應用在藥妝及環保產品中,這些被製造的產品及副產品最終還是流入水中環境;傳統材料經奈米化後,使其顆粒變小,表面積增加,可能會造成水中生物之風險。而行為的改變,可用來評估魚類受到環境緊迫之影響,也可連結生化和生理過程,且提供環境汙染物對魚類之影響,影響層面可從個體層次到族群層次。本實驗以斑馬魚為模式物種,進行奈米顆粒二氧化鈦暴露,共六個處理組,分別為控制組, 0.1, 0.5, 1, 5 及10 mg/l,暴露後每12小時觀察其孵化率、畸形率,並在胚胎暴露第120小時後,進行游泳行為觀察,結果顯示其孵化率、存活率、畸形率皆無顯著差異,但在濃度為0.1、0.5、1 mg/l 時會造成斑馬魚仔魚平均泳速及活動力下降。第二部份奈米顆粒二氧化鈦抗氧化實驗則添加抗氧化劑之前驅物乙醯半胱氨酸50 μM (N-acetylcysteine, NAC)和抗氧化劑抑制物之穀胱甘肽合成酶抑制劑5 μM (buthionine sulfoximine, BSO)處理組,以探討奈米顆粒二氧化鈦是否會對生物體造成氧化緊迫反應,而行為結果顯示添加NAC與BSO,並不會影響其行為。再以啶橘染色分析斑馬魚仔魚之細胞凋亡,結果顯示細胞凋亡在各組間無顯著差異。此研究顯示奈米顆粒二氧化鈦除了氧化緊迫外可能還有其他因素參與了行為毒性,例如生理上反應、腦部神經受損等,其相關毒性還需往後更多研究加以證實。最後研究顯示,行為比其他傳統毒理學研究標的(例如:孵化率、活存率)更能敏感地偵測奈米顆粒二氧化鈦對斑馬魚之發育毒性。

English Abstract

Titanium dioxide nanoparticles (TiO2 NP) is a novel material that can be used in healthcare, cosmetics and environmental products. However, TiO2 NP would eventually flow into aquatic environment. Increased surface area of nanoparticles can potentially cause damage to aquatic lives. Behavior of fish provides connections to fish biochemistry and physiology processes, and can be a valuable tool to detect the influence of the environmental pressure on fishes. In addition, observing fish behaviors allow us to have a perspective on the influence of pollutants at the population level. In this study, fertilized zebrafish eggs were exposed to TiO2 NP (control, 0.1, 1.5, 1, 5 and 10 mg/l), and the hatching rate, mortality, malformation rate were observed every 12 hours. In addition, larval swimming ability was evaluated at 120 hours post fertilization. The result showed no significant difference in hatchability, survival, and malformation rate between groups, but TiO2 NP at 0.1, 0.5, 1 mg/l caused decreased average velocity and activity level of larval zebrafish. Co-exposure to either the glutathione precursor, N-acetylcysteine (NAC), or the glutathione synthesis inhibitor, buthionine sulfoximine (BSO), did not significantly alter the behavioral effects resulting from TiO2 NPs. Acridine orange staining of larvae showed no significant difference in apoptosis level between groups. Our data suggests that other factor(s) besides oxidative stress may contribute to the behavioral toxicity of TiO2 NPs. Our study also showed that the behavioral endpoints were more sensitive than the others (e.g., hatchability and survival) to detect toxicity of TiO2 NPs on developing fish.

Topic Category 農學院 > 水產養殖系所
生物農學 > 漁業
Reference
  1. Atchison, G.J., Henry, M.G., Sandheinrich, M.B., 1987. Effects of metals on fish behavior: a review. Environmental Biology of Fishes 18, 11-25.
    連結:
  2. Barakat, M.A., 2005. Adsorption behavior of copper and cyanide ions at TiO2-solution interface. Journal of Colloid and Interface Science 291, 345-352.
    連結:
  3. Beauvais, S.L., Jones, S.B., Brewer, S.K., Little, E.E., 2000. Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout (Oncorhynchus mykiss) and their correlation with behavioral measures. Environmental Toxicology and Chemistry 19, 1875-1880.
    連結:
  4. Bjerselius, R., Lundstedt-Enkel, K., Olse´n, H., Mayer, I., Dimberg, K., 2001. Male goldfish reproductive behavior and physiology are severely affected by exogenous exposure to 17-estradiol. Aquatic Toxicology 53, 139-152.
    連結:
  5. Brewer, S.K., Little, E.E., DeLonay, A.J., Beauvais, S.L., Jones, S.B., Ellersieck, M.R., 2001. Behavioral Dysfunctions Correlate to Altered Physiology in Rainbow Trout (Oncorynchus mykiss) Exposed to Cholinesterase-Inhibiting Chemicals. Archives of Environmental Contamination and Toxicology 40, 70-76.
    連結:
  6. Bridges, C.M., 1997. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environmental Toxicology Chemistry 16, 1935-1939.
    連結:
  7. Chance, B., Sies, H., Boveris, A., 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605.
    連結:
  8. Daughton, C.G., 2004. Non-regulated water contaminants: emerging research. Environmental Impact Assessment Review 24, 711-732.
    連結:
  9. Dusenbery, D.B., 1985. Using a microcomputer and video camera to simultaneously track 25 animals. Computers in Biology and Medicine 15, 169-175.
    連結:
  10. Federici, G., Shaw, B.J., Handy, R.D., 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology 84, 415-430.
    連結:
  11. Ferin, J., Oberdörster, G., 1985. Biological Effects and Toxicity Assessment of Titanium Dioxides: Anatase and Rutile. American Industrial Hygiene Association Journal 46, 69 - 72.
    連結:
  12. Filho, D.W., 1996. Fish antioxidant defenses–a comparative approach. Brazilian Journal of Medical and Biological Research 29, 1735-1742.
    連結:
  13. Fridovich, l., 1974. Superoxide dismutases. Advances in enzymology & related areas of molecular biology 41, 35-97.
    連結:
  14. Gatti, A.M., Rivasi, F., 2002. Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23, 2381-2387.
    連結:
  15. Gerlai, R., Fernandes, Y., Pereira, T., 2009. Zebrafish (Danio rerio) responds to the animated image of a predator: Towards the development of an automated aversive task. Behavioural Brain Research 201, 318-324.
    連結:
  16. Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., Barber, D.S., 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science & Technology 41, 8178-8186.
    連結:
  17. Gurr, J.-R., Wang, A.S.S., Chen, C.H., Jan, K.Y., 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66-73.
    連結:
  18. Handy, R.D., Eddy, F.B., 1991. Effects of inorganic cations on Na+ adsorption to the gill and body surface of rainbow trout (Oncorhynchus mykiss) in dilute solutions. Canadian Journal of Fisheries Aquatic Science 48, 1829-1837.
    連結:
  19. Handy, R.D., Henry, T.B., Scown, T.M., Johnston, B.D., Tyler, C.R., 2008a. Manufactured nanoparticles: their uptake and effects on fish-a mechanistic analysis. Ecotoxicology 17, 396-409.
    連結:
  20. Handy, R.D., Owen, R., Valsami-Jones, E., 2008b. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17, 315-325.
    連結:
  21. Handy, R.D., Sims, D.W., Giles, A., Campbell, H.A., Musonda, M.M., 1999. Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquatic Toxicology 47, 23-41.
    連結:
  22. Handy, R.D., von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R., Crane, M., 2008c. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287-314.
    連結:
  23. Hansen, J.A., Marr, J.C.A., Lipton, J., Cacela, D., Bergman, H.L., 1999. Differences in neurobehavioral responses of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance. Environmental Toxicology and Chemistry 18, 1972-1978.
    連結:
  24. Hao, L., Wang, Z., Xing, B., 2009. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). Journal of Environmental Sciences 21, 1459-1466.
    連結:
  25. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A., 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308-1316.
    連結:
  26. Henry, M.G., Atchison, G.J., 1986. Behavioral Changes in Social Groups of Bluegills Exposed to Copper. Transactions of the American Fisheries Society 115, 590-595.
    連結:
  27. Hirano, K., Nitta, H., Sawada, K., 2005. Effect of sonication on the photo-catalytic mineralization of some chlorinated organic compounds. Ultrasonics Sonochemistry 12, 271-276.
    連結:
  28. Hoy, J.B., Koehler, P.G., Patterson, R.S., 1996. A microcomputer-based system for real-time analysis of animal movement. Journal of Neuroscience Methods 64, 157-161.
    連結:
  29. Kane, A.S., Salierno, J.D., Brewer, S.K., 2005. Fish models in behavioral toxicology: Automated techniques, updates and perspectives. In: Ostrander, G.K. (Ed.). Techniques in Aquatic Toxicology. CRC Press, Boca Raton, FL, USA, pp. 559-590.
    連結:
  30. Kato, S., Tamada, K., Shimada, Y., Chujo, T., 1996. A quantification of goldfish behavior by an image processing system. Behavioural Brain Research 80, 51-55.
    連結:
  31. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253-310.
    連結:
  32. Kong, X., Wang, G., Li, S., 2007. Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress. Chinese Journal of Oceanology and Limnology 25, 221-226.
    連結:
  33. Lawrence, C., 2007. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 269, 1-20.
    連結:
  34. Little, E.E., Finger, S.E., 1990. Swimming behavior as an indicator of sublethal toxicity in fish. Environmental Toxicology Chemistry 9, 13-19.
    連結:
  35. Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V., Veronesi, B., 2006. Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Environmental Science & Technology 40, 4346-4352.
    連結:
  36. Lovern, S.B., Klaper, R., 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry 25, 1132-1137.
    連結:
  37. Mallat, J., 1985. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fisheries and Aquatic Science 42, 630-648.
    連結:
  38. Miklósi, Á., Andrew, R.J., 2006. The Zebrafish as a Model for Behavioral Studies. Zebrafish 3, 227-234.
    連結:
  39. Moore, M.N., 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32, 967-976.
    連結:
  40. Noldus, L.P.J.J., SPINK, A.J., Tegelenbosch, R.A.J., 2001. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, & Computers 33, 398-414.
    連結:
  41. Oberd¨orster, G., Ferin, J., Gelein, R., Soderholm, S.C., Finkelstein, J., 1992. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environmental Health Perspectives 97, 193-199.
    連結:
  42. Oberdorster, E., 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives 112, 1058-1062.
    連結:
  43. Pandey, S., Parvez, S., Sayeed, I., Haque, R., Bin-Hafeez, B., Raisuddin, S., 2003. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). The Science of The Total Environment 309, 105-115.
    連結:
  44. Pyati, U.J., Look, A.T., Hammerschmidt, M., 2007. Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Seminars in Cancer Biology 17, 154-165.
    連結:
  45. Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D.G., Schiffmann, D., 2002. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental Health Perspectives 110, 797-800.
    連結:
  46. Reeves, J.F., Davies, S.J., Dodd, N.J.F., Jha, A.N., 2008. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 640, 113-122.
    連結:
  47. Reid, S.D., McDonald, D.G., 1991. Metal binding activity of the gills of rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Science 48, 1061-1068.
    連結:
  48. Saglio, P., Trijasse, S., 1998. Behavioral Responses to Atrazine and Diuron in Goldfish. Archives of Environmental Contamination and Toxicology 35, 484-491.
    連結:
  49. Schaefer, J., Ryan, A., 2006. Developmental plasticity in the thermal tolerance of zebrafish Danio rerio. Journal of Fish Biology 69, 722-734.
    連結:
  50. Scholz, N.L., Truelove, N.K., French, B.L., Berejikian, B.A., Quinn, T.P., Casillas, E., Collier, T.K., 2000. Diazinon disrupts antipredator and homing behaviors in chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Science 57, 1911-1918.
    連結:
  51. Scott, G.R., Sloman, K.A., 2004. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology 68, 369-392.
    連結:
  52. Scott, G.R., Sloman, K.A., Rouleau, C., Wood, C.M., 2003. Cadmium disrupts behavioural and physiological responses to alarm substance in juvenile rainbow trout (Oncorhynchus mykiss). Journal Experimental Biology 206, 1779-1790.
    連結:
  53. Smedsrud, T., Dannevig, B.H., Tolleshaug, H., Berg, T., 1984. Endocytosis of a mannose-terminated glycoprotein and formaladehyde-treated human serum albumin in liver and kidney cells from fish ( L.). Developmental & Comparative Immunology 8, 579-588.
    連結:
  54. Smith, C.J., Shaw, B.J., Handy, R.D., 2007. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology 82, 94-109.
    連結:
  55. Suzuki, K., Takagi, T., Hiraishi, T., 2003. Video analysis of fish schooling behavior in finite space using a mathematical model. Fisheries Research 60, 3-10.
    連結:
  56. Teather, K., Harris, M., Boswell, J., Gray, M., 2001. Effects of Acrobat MZ® and Tattoo C® on Japanese medaka (Oryzias latipes) development and adult male behavior. Aquatic Toxicology 51, 419-430.
    連結:
  57. Teraoka, H., Dong, W., Hiraga, T., 2003. Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom (Kyoto) 43, 123-132.
    連結:
  58. Tucker, B., Lardelli, M., 2007. A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish 4, 113-116.
    連結:
  59. Usenko, C.Y., Harper, S.L., Tanguay, R.L., 2007. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon New York 45, 1891-1898.
    連結:
  60. Usenko, C.Y., Harper, S.L., Tanguay, R.L., 2008. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicology Applied Pharmacology 229, 44-55.
    連結:
  61. Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13, 57-149.
    連結:
  62. Vogl, C., Grillitsch, B., Wytek, R., Hunrich Spieser, O., Scholz, W., 1999. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part I. Variability of measurement parameters under general test conditions. Environmental Toxicology and Chemistry 18, 2736-2742.
    連結:
  63. Wang, H., Wick, R.L., Xing, B., 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157, 1171-1177.
    連結:
  64. Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., Li, Y., Jiao, F., Zhao, Y., Chai, Z., 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters 168, 176-185.
    連結:
  65. Warheit, D.B., 2004. Nanoparticles: Health impacts? Materials Today 7, 32-35.
    連結:
  66. Warheit, D.B., Brock, W.J., Lee, K.P., Webb, T.R., Reed, K.L., 2005. Comparative Pulmonary Toxicity Inhalation and Instillation Studies with Different TiO2 Particle Formulations: Impact of Surface Treatments on Particle Toxicity. Toxicological Sciences 88, 514-524.
    連結:
  67. Warheit, D.B., Webb, T.R., Sayes, C.M., Colvin, V.L., Reed, K.L., 2006. Pulmonary Instillation Studies with Nanoscale TiO2 Rods and Dots in Rats: Toxicity Is not Dependent upon Particle Size and Surface Area. Toxicological Sciences 91, 227-236.
    連結:
  68. Westcott, D.A., Graham, D.L., 2000. Patterns of movement and seed dispersal of a tropical frugivore. Oecologia 122, 249-257.
    連結:
  69. Wibe, Å.E., Nordtug, T., Jenssen, B.M., 2001. Effects of bis (tributyltin) oxide on antipredator behavior in threespine stickleback Gasterosteus aculeatus L. Chemosphere 44, 475-481.
    連結:
  70. Winterbourn, C.C., Metodiewa, D., 1999. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biology and Medicine 27, 322-328.
    連結:
  71. Wong, S., Leung, P., Djurišić, A., Leung, K., 2010. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry 396, 609-618.
    連結:
  72. Wyllie, A., 1997. Apoptosis: an overview. British Medical Bulletin 53, 451-465.
    連結:
  73. Xie, Y., Chen, F., He, J., Zhao, J., Wang, H., 2000. Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation. Journal of Photochemistry and Photobiology A: Chemistry 136, 235-240.
    連結:
  74. Ye, S., Bell, W.J., 1991. A simple video position-digitizer for studying animal movement patterns. Journal of Neuroscience Methods 37, 215-225.
    連結:
  75. Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., Lang, Y., 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. Journal Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 43, 278-284.
    連結:
  76. 何大仁、蔡厚才,1999。魚類行為學。水產出版社。
  77. 曹茂盛,2002。奈米材料的基本概念與性質,奈米材料導論。學富文化事業。
  78. 林正良,2004。奈米科技於傳統產業之應用,台灣奈米科技。工業技術研究院。
  79. 陳俊傑,2006。以S. cerevisiae FC-3批示生產r-GC與GSH之發酵動力學解析。雲林科技大學工業化學與災害防治研究所碩士論文。
  80. Godden, D.H., Graham, D., 1983. Instant analysis of movement. Journal of Experimental Biology 107, 505-508.
  81. Miller, D.C., Lang, W.H., Graeves, J.O.B., Wilson, R.S., 1982. Investigation in aquatic behavioral toxicology using a computerized video quantification system. In: Pearson, J.G., Foster, R.B., Bishop, W.E. (Ed.). Aquatic Toxicology and Hazard Assessment: Fifth Conference. STP 766. American Society for Testing and Chemicals, Philadelphia, PA, pp. 2736-2742.
  82. Ziment, I., 1988. Acetylcysteine: a drug that is much more than a mucokinetic. Biomedicine & Pharmacotherapy 42, 513-519.