Title

雙酚A對有機廢棄物厭氧消化影響之研究

Translated Titles

The Effect of BPA on MSW Anaerobic Digestion

Authors

吳佳晋

Key Words

雙酚A ; 固體物停留時間 ; 厭氧消化 ; 有機固體廢棄物 ; PCR ; DGGE ; DGGE ; PCR ; Bisphenol A ; Solid retention time ; Anaerobic digestion ; Organic solid waste

PublicationName

朝陽科技大學環境工程與管理系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

羅煌木

Content Language

繁體中文

Chinese Abstract

摘要 利用厭氧消化處理有機固體廢棄物,在近年來相當受到關注,這項廢棄物處理技術,能透過微生物生物代謝途徑,產生能源並作為電力和熱能使用。然而在都市體廢棄物中含有多元且複雜之毒性有害物質將影響都市固體廢棄物厭氧消化槽之操作效能與參數,因此研究都市固體廢棄物厭氧消化之影響因子,顯得格外重要。由於雙酚A (Bisphenol A, BPA)為環境荷爾蒙之一,使用範圍廣泛且全球釋放量已達46萬5千磅之多,且在垃圾掩埋場滲?液中常被檢測出來,來源為塑膠垃圾之溶出,由此得知,BPA已成為目前都市固體廢棄物中主要污染物來源之一,因此本研究擬對BPA對都市固體廢棄物厭氧消化的影響進行探討。 研究分為三大主軸,探討含不同濃度BPA之有機廢棄物對厭氧消化之影響,與改變固體物停留時間(Solid retention time, SRT),對BPA有機廢棄物對厭氧消化之影響,與利用PCR-DGGE鑑定厭氧消化系統中,菌相組成及親緣關係,並尋找可適應或降解BPA之菌群。厭氧反應槽工作體積為4公升,SRT分別為13.3天、20天、40天,BPA濃度分別為10 mg/L、100 mg/L、500 mg/L,進出量為厭氧反應槽工作體積/固體物停留時間(4公升/20天=0.2公升/天;4公升/13.3天=0.3公升/天;4公升/10天=0.1公升/天),取出之消化基質作為參數分析使用。 研究結果顯示,在SRT20的操作條件,有機廢棄物厭氧消化槽受到BPA的影響,各濃度的反應槽全面產生抑制現象,在持續操作至第126天後,BPA 10 mg/L組和BPA 100 mg/L組,微生物已完全馴化為適應BPA之菌群,促進了沼氣產率,約1~ 2.46倍,而在BPA 500 mg/L組,呈現完全抑制。SRT調整為 13.3天後,BPA 10 mg/L組和BPA 100 mg/L組,產能有下降趨勢,約促進0.4~ 0.7倍之沼氣產率,當SRT調整為40天後,受到SRT13.3時有機物濃度累積的影響,微生物無法負荷,造成活性的衰退。BPA分析結果顯示,液相中BPA濃度在13.25~20.65 mg/L時,不會改變微生物菌群結構,而是適應了其生長環境,並有提升都市固體廢棄物厭氧消化槽的沼氣產量之潛力,然而BPA濃度在95.36 mg/L以上時,則不利於都市固體廢棄物進行厭氧消化。PCR-DGGE分析結果顯示,Clostridium sp.扮演了分解纖維素的角色,兼性厭氧菌如Sporobacterium olearium、Klebsiella pneumoniae和Leuconostoc mesenteroides,則可將環境中殘餘的氧氣消耗掉,以利於絕對厭氧菌的生長,產甲烷菌群以Methanosarcina sp.、Methanosarcina barkeri和Methanomicrobiales archaeon為主。

English Abstract

Abstract Anaerobic digestion treatment for organic solid waste has been increasingly used in recent years. This treatment technology can generate energy through microbial metabolic pathway. Municipal solid waste (MSW) contains complicated substance with potential toxicity and harm that might affect the MSW anaerobic digestion. Thus, understanding the affecting factors and potential harmful substance for MSW anaerobic digestion is important. Bisphenol A (BPA) is one of the widely used endocrine disrupting chemicals (EDC). The global release amount has already found to be four hundred and sixty five thousand pounds. It has been detected very often in leachate of sanitary landfill. Recently, BPA has been found at MSW that might contain used polycarbonate. Release of BPA from MSW might be detrimental to the human health and the ecological environment. Thus, reducing the potential harm of BPA via MSW anaerobic digestion is the objective of this study. There are three major themes in this study, investigating the effect f anaerobic digestion from various concentrations of BPA containing organic waste, changing solid retention time (SRT) to understand its effect on anaerobic digestion from BPA containing organic waste, and making use of PCR-DGGE to identify microbial community and their relationship to the anaerobic digestion. The working volume of anaerobic reactor was 4 liters, SRT were 13.3, 20 and 40 days respectively. BPA concentrations were 10, 100, and 500 mg/L respectively. The input and output amount of substrates were 0.3, 0.2 and 0.1 L/d respectively (4 L/20 d= 0.2 L/d; 4 L/13.3 d= 0.3 L/d; 4 L/10 d= 0.1 L/d). The digestate taken out was used for parameter analysis. Results showed, under SRT20 operation condition, anaerobic digestion of organic waste has been affected by BPA. The reactors with different concentrations were found to be inhibited in the beginning. However, BPA 10 mg/L and BPA 100 mg/L added bioreactors were found to acclimate and adapt BPA levels and the biogas production was enhanced to be around 1 ~ 2.46 times. However, BPA 500 m/L added bioreactors were found to be inhibited completely. As the SRT operated at 13.3 days, BPA 10 mg/L and BPA 50 mg/L added bioreactors were found to produce about 0.4 ~ 0.7 times of biogas accumulation compared to SRT20. As SRT was changed to be 40 days, the biogas production was decreased increasingly due to the potential shortage of substrate supply. BPA analysis result showed, when BPA concentration was at 13.25~20.65 mg/L in liquid phase, it will not change microbial structure. However, it could adapt to its growing environment and has the potential to improve biogas production for MSW anaerobic digestion. As BPA concentration increased more than 95.36 mg/L, it was detrimental to MSW anaerobic digestion. PCR-DGGE analysis result showed that Clostridium sp. payed s a role in dissolving cellulose, facultative anaerobe such as Sporobacterium olearium, Klebsiella pneumonia and Leuconostoc mesenteroides could consume residual oxygen in environment that was beneficial for the growth of obligate anaerobic bacteria. Methanogenic bacteria were found to be the major species of Methanosarcina sp., Methanosarcina barkeri and Methanomicrobiales archaeon.

Topic Category 理工學院 > 環境工程與管理系
工程學 > 土木與建築工程
Reference
  1. 1.Akarsubasi, A. T., Ince, O., Kirdar, B., Oz, N. A., Orhon, D., Curtis, T. P., Head, I. M., and Ince, B. K., “Effect of Wastewater Composition on Archaeal Population Diversity,” Water Research, Vol. 39, pp. 1579-1584 (2005).
    連結:
  2. 2.Baker V.A., “Endocrine disrupters-testing strategies to assess human hazard,” Toxicol, In Vitro, Vol. 15, pp.413-419 (2001).
    連結:
  3. 3.Baker, G. C., Smith, J. J., Richard, L., and Cowan, D. A., “Review and Re-Analysis of Domain-Specific 16S Primers,” Journal of Microbiological Methods, Vol. 55, pp. 541-555 (2003).
    連結:
  4. 4.Beer, L. L., Boyd, E. S., Peters, J. W., and Posewitz, M. C., “Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnol,” Vol. 20, pp. 264-271(2009).
    連結:
  5. 5.Brennan, L., and Owende, P., “Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products, ” Renewable and Sustainable Energy Reviews, doi: 10.1016/j.rser.2009.10.009(2010).
    連結:
  6. 6.Bell, G., and Gonzalez, A., “Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration,” Science, Vol. 10, pp.1327-1330(1982).
    連結:
  7. 7.Carlsen E., Givercman A., Keiding N., and Skakkebaek N. E., “Evidence for dreasing quality of seman during past 50 years,” Br Med J, Vol. 305, pp.609-613(1992).
    連結:
  8. 8.Colborn T., Vom Saal F. S., and Soto A. M., “Developmental effects of endocrine-disrupting chemicals in wildlife and humans,” Environ Health Perspect, Vol. 101, pp.378-384(1993).
    連結:
  9. 9.Chen, Y., Cheng, J. J., and Creamer, K.S., “Inhibition of anaerobic digestion process: a review.,”Bioresource Technology, Vol. 99, No. 10, pp.4044–64(2008).
    連結:
  10. 11.De Baere, L., “Anaerobic digestion of solid waste: state-of-the-art,” Water Science and Technology, Vol. 41, No. 3, pp.283–90(2000).
    連結:
  11. 12.Duku, M. H., Gu, S., and Hagan, E. B., “A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable and Sustainable Energy Reviews,” Vol. 15, pp. 404-415(2011).
    連結:
  12. 14.Dynamics during Startup of a Full-Scale Anaerobic Sequencing Batch Reactor Treating Swine Waste, Wat. Res, Vol. 36, No. 18, pp.764-782(1982).
    連結:
  13. 16.Fang, H. H. P., Zhang, T., and Liu, H., “Microbial Diversity of a Mesophilic Hydrogen-Producing Sludge,” Applied Microbiology and Biotechnology, Vol. 58, pp.112-118(2002).
    連結:
  14. 17.Fertmans F., Dhooge W., Stuyvaert F., and Comhaire F., “Endocrine disruptors:effect on male infertility and screening tools for their assessment,” Toxicol In Vitro, Vol. 17, pp.515-524(2003).
    連結:
  15. 18.Fromme, H., Kuchler, T., and Otto, T., “Occurrence of phthalates and bisphenol A and F in the environment,” Water. Res, Vol. 36, pp.1429-1438(2002).
    連結:
  16. 19.Fromme, H., KUchler, T., and Otto, T., “Occurrence of phthalates and bisphenol A and F in the environment,” Water. Res, Vol. 36, pp. 1429-1438(2002).
    連結:
  17. 20.Fromme, H., Kuchler, T., Otto, T., Pilz, K., Muller, J., and Wenzel, A., “Occurrence of phthalates and bisphenol A and F in the environment,” Water Res, Vol. 36, pp. 1429-1438(2002).
    連結:
  18. 21.Gachet, E., Martin G.G., and Vigneau, F., “Detection of genetically modified organisms (GMOs) by PCR: a brief review of methodologies available,” Trends in Food Science and Technology, Vol. 9, pp.380-388(1999).
    連結:
  19. 22.Giesy J. P., Hilscherova P. D., Kannan K., and Machala M., “Cell bioassays for detection of aryl hydrocarbon and estrogen receptor mediated activity in environmental samples,” Mar Pollut Bull, Vol. 45, pp.3-16(2002).
    連結:
  20. 23.Gerardi, M. H., “The microbiology of anaerobic digesters,” New York: Wiley, John & Sons(2003).
    連結:
  21. 24.Gottschalk G.(1986), Bacterial Metabolism, Spring-Verlag New York, pp1-11, 208-282.
    連結:
  22. 25.Howard, P. H., “Handbook of environmental fate and exposure data,” Chelsea, MI, Lewis Publishers,(1989).
    連結:
  23. 27.Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., and Chmielewski A. G., “Application of polyimide membranes for biogas purification and enrichment,” Journal of Hazardous Materials, Vol. 144, pp.698-702(2007).
    連結:
  24. 28.Jin, X., Jiang, G., and Huang, G., “Determination of 4-tert-octylphenol ,4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring,” Chemosphere, Vol. 56, pp.1113-1119(2004).
    連結:
  25. 29.Koh, C. H., Khim, J. S., and Villeneuve, D. L., “Characteriza-tion of trace organic contaminants in marine sediment from Yeo-ngil Bay, Korea: 1,” Instrumental analyses, Environmental Pollution, Vol. 142, No. 1, pp.39-47(2006).
    連結:
  26. 30.Khim, J. S., Kannan, K., and Villeneuve, D. L., “Characteriza-tion and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 1. Instrumental Analysis,” Environ-ment Science and Technology, Vol. 33, No. 23, pp.4199-4205(1999).
    連結:
  27. 31.Li, Z. Y., Fu, M. Z., and Gao, H. W., “Distribution characteristics of non-ylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers,” Chemosphere, Vol. 69, pp.1009-1016(2008).
    連結:
  28. 32.Li, Y., “Stephen Y. Park, Jiying Zhu, Solid-state anaerobic digestion for methane production from organic waste,” Renewable and Sustainable Energy Reviews, Vol. 15, pp. 821-826 (2011).
    連結:
  29. 33.Li.Y., Park, S. Y., and Zhu, J., “Solid-state anaerobic digestion for methane production from organic waste,” Renewable and Sustainable Energy Reviews, Vol. 15, pp.821-826(2011).
    連結:
  30. 35.Largus, T. A., Sungb, L. S., and Raskina, L., “Methanogenic Population Dynamics during Startup of a Full-Scale Anaerobic Sequencing Batch Reactor Treating Swine Waste,” Wat. Res, Vol. 36, No. 18, pp. 4648-4654 (2002).
    連結:
  31. 36.Lo, H. M., Liao, Y. L., “The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites,” Journal of Hazardous Materials, Vol. 142, pp. 512–519(2007).
    連結:
  32. 38.Li, X. L., Lin, L., and Zou, S. C., “Determination of bisphenol A in andfill leachate by solid phase microextraction with headspace derivatization and gas chromatography-mass spectrophotometry,” Chin. J. Anal. Chem, Vol. 34, No. 3, pp. 325-328(2006).
    連結:
  33. 39.Lo, H. M., Kurniawan, T. A., Sillanpaa, M. E. T., Pai, T. Y., Chiang, C. F., Chao, K. P., Liu, M. H., Chuang, S. H., Banks, C. J., Wang, S. C., Lin, K. C., Lin, C. Y., Liu, W. F., Cheng, P. H., Chen, C. K., Chiu, H. Y., and Wu, H. Y., “Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors,” Bioresource Technology, Vol. 101, pp.6329-6335(2010).
    連結:
  34. 40.Lo, H. M., Chiang, C. F., Tsao, H. C., Pai, T. Y., Liu, M. H., Kurniawan, T. A., Chao, K. P., Liou, C. T., Lin, K. C., Chang, C. Y., Wang, S. C., Banks, C. J., Lin, C. Y., Liu, W. F., Chen, P. H., Chen, C. K., Chiu, H. Y., Wu, H. Y., Chao, T. W., Chen, Y. R., Liu, D. W., and Lo, F. C., “Effects of spiked metals on the MSW anaerobic digestion,” Waste Management & Research, Vol. 30, pp.32-48(2012).
    連結:
  35. 41.Limam, I., Mezni, M., Guenne, A., Madigou, C., Driss, M. R., Bouchez, T., and Mazeas, L., “Evaluation of biodegradability of phenol and bisphenol A during mesophilic and thermophilic municipal solid waste anaerobic digestion using 13C-labeled contaminants,” Chemosphere(2012).
    連結:
  36. 42.Lay, J. J., “Biohydrogen Generation by Mesophilic Anaerobic Fermentation of Microcrystalline Cellulose,” Biotechnology and Bioengineering, Vol. 74, pp.280-287(2001).
    連結:
  37. 43.Liu, Y. C., and William, B. W., “Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea,” Ann NY Acad Sci, Vol. 1125, pp.171-189(2008).
    連結:
  38. 44.Muyzer, G., de Waal, E. C., and Uitterlinden, A. G., “Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA,” Appl. Environ. Microbiol, Vol. 59, pp.695-700(1993).
    連結:
  39. 45.Markey, C. M., Luque, E. H., De Tor M. M., Sonnenschein C., and Soto A.M., “In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland,” Biol. Reprod, Vol. 65, pp. 1215-1223(2001).
    連結:
  40. 46.Mao, L., Sun, C., and Zhang, H., “Determination of environmental estrogens in human urine by high performance liquid chromatography after fluorescent derivatization with p-nitrobenzoyl chloride,” Anal. Chim. Acta, Vol. 522, pp.241-246(2004).
    連結:
  41. 50.Oehlmann, J., Oetken, M., and Schulte-Oehlmann, U., “A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption,” Environ. Res, Vol. 108, pp. 140-140(2008).
    連結:
  42. 51.Oman, C. B., and Junestedt, C., “Chemical characterization of landfill leachates – 400 parameters and compounds,” Waste Management, Vol. 28, No. 10, pp. 1876-1891(2008).
    連結:
  43. 52.Panwar, N. L., Kaushik, S. C., and Kothari, S., “Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews,” Vol. 15, pp. 1513-1524(2011).
    連結:
  44. 54.Pojana, G., Gomiero, A., and Jonkers, N., “Natural and syn-thetic endocrine disrupting compounds (EDCs) in water sedi-ment and biota of a coastal lagoon,” Environment Internation-al, Vol. 33, pp.929-936(2007).
    連結:
  45. 55.Rasi, S., Veijanen, A., and Rintala, J., “Trace compounds of biogas from different biogas production plants,” Energy. Vol. 32, pp.1375-1380(2007).
    連結:
  46. 56.Robinson, H. D., Knox, K., Van Santen, A., and Tempany, P. R., “Compliance of UK landfills with EU pollution emissions legislation: development of a reporting protocol,” Proceedings Eighth International Waste Management and Landfill Symposium, Sardinia, Caliari, Italy, pp. 21-30(2001).
    連結:
  47. 58.Salomoni, C., Caputo, A., Bonoli, M., Francioso, O., Rodriguez-Estrada M. T., and Palenzona, D., “Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes,” Bioresour. Technol, Vol. 102, pp. 6443-6448(2011).
    連結:
  48. 59.Skjanes, K., Lindblad, P., and Muller, J., “BioCO2 – A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products,” Biomolecular Eng, Vol. 24, pp. 405-413(2007).
    連結:
  49. 60.Staples, C. A., Dome, P. B., Klecka, G. M., Oblock, S. T., and Harris, L. R., “A review of the environmental fate, effects, and exposures of bisphenol A,” Chemosphere, Vol. 36, pp. 2149-2173 (1998).
    連結:
  50. 61.Sonnenschein C., Soto A. M., “An updated review of environmental estrogen and androgen mimics and antagonists,” Steroid Biochem, Vol. 65, pp. 143-150 (1998)
    連結:
  51. 62.Skakkebaek N. E., and Rajpert-De M. E., “Testicular dysgenesis symdrome:an increasing common developmental disorder with environmental aspexts.Hum,” Reprod, ASCE, pp. 972-978 (2001).
    連結:
  52. 63.Sun, Q., Li, Y., Chou, P. H., Peng, P. Y., and Yu, C. P., “Transformation of Bisphenol A and Alkylphenols by AmmoniaOxidizing Bacteria through Nitration,” American Chemical Society, Vol. 46, pp.4442?4448 (2012).
    連結:
  53. 65.Ueno, Y., Kawai, T., Sato, S., Otsuka, S., and Morimoto, M., “Biological Production of Hydrogen from Cellulose by Natural Anaerobic Microflora,” Journal of Fermentation and Bioengineering, Vol. 79, pp.395-397(1995).
    連結:
  54. 66.Vom Saal, F. S., and Myers, J. P., “Bisphenol A and risk of metabolic disorders, ” JAMA, Vol. 300, pp. 1353-1355 (2008).
    連結:
  55. 67.Van Dyke, M. I., and McCarthy, A. J., “Molecular Biological Detection and Characterization of Clostridium Populations in Municipal Landfill Sites,” Appl. Environ, Microbiol, Vol. 68, pp.2049-2053(2002).
    連結:
  56. 68.Vilchez, J. L., Zafra, A.,and Gonzulez-Casado, A., “Determination of trace amounts of bisphenol F,bisphenol A and their diglycidyl ethers in wastewater by gas chromatography-mass spectrometry,” Anal. Chim. Acta, Vol. 431, pp. 31-40(2001).
    連結:
  57. 69.Vilchez, J. L., Zafra, A., and Gonzulez-Casado, A., “Determination of trace amounts of bisphenol F, bisphenol A and their diglycidyl ethers in wastewater by gas chromatography-mass spectrometry,” Anal. Chim. Acta, Vol. 431, pp.31-40(2001).
    連結:
  58. 70.Yamamoto, T., Yasuhara, A., Shiraishi, H., and Nakasugi, O., “Bisphenol A in hazardous waste landfill leachates,” Vol. 42, pp415-418(2001).
    連結:
  59. 72.Zhang, H., Zuehlke, S., Guenther, K. and Spiteller, M., “Enantio-selective separation and determination of single nonylphenol isomers,” Chemosphere, Vol. 66, pp. 594–602 (2007).
    連結:
  60. 73.Zafra, A., Del Olmo, M., and Pulgar, R., “Determination of bisphe- nol-A and related compounds in Human Saliva by gas chro- matography-mass spectrometry,” Chromatographia, Vol. 56, pp.213-218(2002).
    連結:
  61. 75.National Center for Biotechnology Information,http://www.ncbi.nlm.nih.gov/, 2013.
    連結:
  62. 77.吳紘宇,「自來水水質致突變性調查研究」,碩士論文,朝陽科技大學環境工程與管理研究所,台中(2010)。
    連結:
  63. 82.趙禹杰,「澱粉及蛋白?複合基質厭氧醱酵產氫程序之功能評估」,碩士論文,國立成功大學環境工程學系研究所,台南(2004)。
    連結:
  64. 88.林志棟、施堅仁,「焚化底碴應用於公共工程之研究」,行政院公共工程委員會研究報告(2004)。
    連結:
  65. 89.羅秋雄、王斐能,「聖誕紅栽培介質電導度適宜性研究」,桃園區農業改良場研究彙報,桃園,第40-46頁(2004)。
    連結:
  66. 90.羅秋雄、王斐能,「盆菊栽培介質電導度適宜性評估」,桃園區農業改良場研究彙報,桃園,第13-24頁(2001)。
    連結:
  67. 10.Colborn T. D., Dumanoski J. P., Our Stolen Future. Penguin, New York, NY. March,(1996).
  68. 13.Dabrock, B., Bahl, H., and Gottschalk, G., “Parameters affecting solvent production by Clostridium pasteuriamum,” Appl. Environ. Microbiol, TAPPI Environmental Conference, Vol. 58, No. 4, pp.1223–1239(1992).
  69. 15.Dabrok, B., Bahl, H., and Gottschalk, G., “Parameters affecting solvent production by Clostridium pasteurianum,” Appl. Environ. Microbial, Vol. 58, No. 4, pp.1233-1239(1992).
  70. 26.Hiroshi, A., Toshihiko, M., and Nobutoshi, T., “Endocrine disrupters in leachate from two MSW landfills of different waste compositions in Japan,” Proceedings of the Second Asian Pacific Landfill Symposium, Seoul, Korea, pp. 728-736(2002).
  71. 34.Largus, T. A., Sungb, L. S., and Raskina, L., “Methanogenic Population
  72. 37.Liu, S., and Scott G. M., “J Biobased Mater,” Bioenergy, Vol. 4, pp. 1(2010).
  73. 47.McGarty, P. L., “Anaerobic Waste Treatment Fundamentals- PartOne Chemistry and Microbiology,” Public Works, Vol. 95, pp.107-112(1964).
  74. 48.Malina, F. J., and Jr. Pohland Frederick, G., “Design of Anaerobic Processes for the Treatment of Industrial and Municipal waste,” Water Quality Managemnt Library(1992).
  75. 49.Nielsen, A. T., Liu, W. T., Filipe, C., Jr, L. G., Soren Molin, S., and Stahl, D. A., “Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor,” Applied and Environmental Microbiology, Vol. 65, pp. 1251-1258 (1999).
  76. 53.Parkin, G. F., and Owen, W. F., “Fundamentals of Anaerobic Digestion of Wastewater Sludge,” American Society of Civil Engineers Committee on Anaerobic Digester Design and Operation, USA. pp. 73(1986).
  77. 57.Sun, R. C., and Shiyu F., “J Biobased Mater,” Bioenergy, Vol. 5, pp. 167 (2011).
  78. 64.Terracciano, J. S., Schreurs, W. J. A., and Kashket, E. R., “Membrance H+ conductance of Clotridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum,” Appl. Eviron. Microbiol, Vol. 53, pp.782–786(1987).
  79. 71.Zehnder, A. J. B., Ingvorsen, K., and Marti, T., “Microbiology of Methane Bacteria. Prensented at the second International Symposium on Anaerobic Digestion,” Travem unde,Germany, pp.6-11(1981).
  80. 74.BacMap,http://bacmap.wishartlab.com/, 2013.
  81. 76.陳昌億,「以電化學地質氧化技術處理雙酚A污染土壤之研究」,碩士論文,國立高雄大學土木與環境工程研究所,高雄(2010)。
  82. 78.徐孝先,「焚化爐灰燼微奈米製備與特性分析及其與垃圾基質共同厭氧消化研究」,碩士論文,朝陽科技大學環境工程與管理研究所,台中(2008)。
  83. 79.吳柔賢,「食品廢水之厭氧醱酵產氫」,博士論文,逢甲大學土木及水利工程研究所,台中(2008)。
  84. 80.陳欣微,「完全混合厭氧醱酵產氫系統在不同操作條件下之菌群結構分析」,博士論文,中興大學環境工程學系研究所,台中(2005)。
  85. 81.張簡成勳,「二相式高溫厭氧消化有機廢棄物之設計及操作維護」,碩士論文,國立屏東科技大學環境工程與科學系,屏東(2005)。
  86. 83.李佳盈,「以積聚菌種污泥進行厭氧產氫」,碩士論文,逢甲大學土木及水利工程研究所,台中(2003)。
  87. 84.邱素芳,「以高溫厭氧共消化有機廢棄物之研究」,碩士論文,國立屏東科技大學環境工程與科學研究所,屏東(2003)。
  88. 85.賴奇厚,「營養鹽對厭氧產氫之影響」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
  89. 86.行政院環保署,「環保各類統計年報」,台北(2013)。
  90. 87.陳文欽,「厭氧生物消化程序處理有機固體廢棄物暨資源化技術探討」,行政院國家科學委員會補助專題研究計畫成果報告,新竹(2009)。
  91. 91.凌永健,「環境荷爾蒙的化學分析」,行政院環境保護署環境檢驗所,No. 32,pp. 9-15(2000)。
  92. 92.劉慧慧、徐英江、鄧旭修、宮向紅、宋秀凱、張煥君、田秀慧、黃會、張秀珍,「萊州灣海域表層沉積物中雙酚A的分佈特徵」,環境化學,第三十一卷,第十期,第1654-1655頁(2012)。
  93. 93.李睿、陳桂珠、譚鳳儀,「雙酚A生物富集與生物降解研究進展」,環境化學,第二十七卷,第一期,第1-5頁(2012)。
  94. 94.邵亮、邊海燕、李正炎,「夏季渤海表層沉積物中壬基酚和雙酚a的分佈特徵與潛在生態風險」,海洋環境科學,第三十卷,第二期,第158-161頁(2011)。
  95. 95.林雲琴,王德漢,「有機廢棄物厭氧消化處理技術研究進展」,廣州華南農業大學資源環境學院環境科學與工程系,第二十六卷,第三期,第55-59頁,廣州(2008)。
  96. 96.蒲貴兵、甄衛東、張記市、孫可偉、陳秋玲,「城市生活垃圾厭氧消化中甲烷產量的生物動力學研究」,昆明理工大學固體廢棄物資源化國家工程驗究中心,第二十四卷,第七期,第55-59頁,雲南,昆明(2007)。
  97. 97.胡建英、楊敏,「自來水及其水源中的內分泌干擾物質」,淨水技術,第二十卷,第三期,第3-6頁(2002)。
  98. 98.鄧茂先,「環境雌激素雙酚A的生殖毒理研究」,環境與健康雜誌,第十八卷,第134 – 136頁(2001)。
  99. 99.吳建誼、丁望賢,「自來水及其水源中的內分泌干擾物質」,中國化學會雜誌,第四十七卷 (2000)。
  100. 100.楊華,「國內外雙酚A生產與市場情況」,化工生產與技術,第二卷,,第55-57頁(1995)。
  101. 101.歐陽嶠暉,下水道工程學(水環境.水再生工程學),長松文化公司,台北,第309-511頁(2002)。
  102. 102.李銘亮,微生物生理學,藝軒圖書出版社,新北市,第18-22頁(2002)。
  103. 103.陳健民,環境毒物學,新文京開發出版股份有限公司,台北,第116-117頁(2002)
  104. 104.林秋裕,環境工程微生物學,二版,國彰出版社,台中(1997)。
  105. 105.柳中民,「溫室效應氣體之過去、現在與未來」,環境工程會刊,第十三卷,第一期,第5-8頁(2002)。
Times Cited
  1. 劉柏均(2015)。以中溫厭氧醱酵反應槽模擬處理豬糞尿廢水之微生物族群變動及效能評估。中興大學環境工程學系所學位論文。2015。1-125。