Title

回收廢二次鋰電池有價金屬

Translated Titles

Recovery of Valuable Metals from Spent Secondary Lithium-ion Battery

Authors

林佳良

Key Words

鈷 ; 溶劑萃取 ; 廢二次鋰電池 ; 錳 ; 鎳 ; Co ; Solvent Extraction ; Waste Secondary Li Battery ; Mn ; Ni

PublicationName

朝陽科技大學環境工程與管理系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

王文裕

Content Language

繁體中文

Chinese Abstract

國內目前營運中的廢電池回收廠僅處理鋅錳電池與鹼錳電池,回收的鋰電池係採境外輸出處理。以往化學沉澱法應用在新型三元系鋰電池回收時,因鈷、鎳、錳三金屬共沉澱,導致回收金屬資源之純度與價值大減。因此本研究探討三元系廢二次鋰電池正極材料之最佳回收再生技術參數,各項回收程序之最佳參數項目,包括浸漬液種類、萃取液pH值、反萃液pH值、操作溫度、時間等。 本研究結果顯示:浸漬酸溶提取金屬時加入雙氧水,協同硫酸對金屬氧化物中金屬的溶出有很大的幫助,提高溫度可促進硫酸對金屬氧化物中金屬的溶出,最佳操作參數為正極材料浸入1 g:25ml之4.0N H2SO4,加熱50±5℃攪拌3hr,並每小時添加1%硫酸體積的雙氧水(35%)。 以D2EHPA萃取錳欲回收高純度物質需操作於低萃取率,而高萃取率則會造成低純度的回收物。經三次循環萃取反萃,錳萃取率由54%逐次提升至80%及94%,最佳的操作參數pH值為2.5。 以HEHEHP萃取鈷時,鎳可能同時被萃取出來,因此進行第一次萃取時pH值為4.5,第二次時pH值為3.5,經兩次循環萃取反萃,鈷萃取率由89%逐漸提升至96%。

English Abstract

Waste battery recycling factories under operation in Taiwan only process Zn/MnO2 batteries and Alkali Mn batteries. The recycled Li batteries are exported to overseas regions for process. When the chemical deposition approach is applied in the new ternary Li battery recycling process, due to all the three metals of Ni, Co, Mn deposit, the purity and value of metal resource recycling are greatly reduced. This study determined the optimal recycling technical parameters and optimal parameter items of various recycling processes of the waste ternary secondary Li battery anode materials, including the types of impregnation liquid, extract PH value, back-extract pH value, operating temperature, and time. The results showed that the method of adding hydrogen peroxide to assist vitriol at the time when extracting metal is helpful for metal leaching from metal oxide. The improvement of temperature can promote the functioning of vitriol to leach metal from metal oxide. The optimal operating parameter is to impregnate anode materials to 1 g: 25ml 4.0N H2SO4, heat up to 50±5℃, mix for 3hr, and add hydrogen peroxide (35%) which is equivalent to 1% vitriol volume per hour. The operation for recycling high purity substance by extracting Mn by D2EHPA was performed in low extraction rate, because high extraction rate would result in recycling of low purity substance. After three times of circulated extraction and back extraction, the Mn extraction rate improved from 54% to 80% and 94%. The optiml operating parameter of pH value is 2.5. When extracting Co by HEHEHP, the Ni was also extracted, so that the pH value for the first time of extraction was 4.5, and the value was 3.5 for the second time. After two times of circulated extraction and back extraction, the Co extraction rate improved from 89% to 96% gradually.

Topic Category 理工學院 > 環境工程與管理系
工程學 > 土木與建築工程
Reference
  1. 18.湯承憲,以二(2-乙基己基)磷酸含浸樹脂吸附鉻(III)離子之平衡研究,國立臺北科技大學化工所碩士論文(2006)。
    連結:
  2. 19.黃世宏,萃取樹脂之合成及其在分離上之應用,國立成功大學化學工程研究所碩士論文(1992)。
    連結:
  3. 24.劉如喜,鋰離子二次電池材料簡介,化學第57卷第2期(1999)。
    連結:
  4. 29.謝嘉容,以D2EHPA含浸樹脂萃取鐵離子之平衡及動力學研究,國立臺北科技大學化工所碩士論文(2005)。
    連結:
  5. 31.Beer, H.B., “The invention and industrial development of metal anodes”, Journal of The Electrochemical Society, 127, 303C-307C(1980).
    連結:
  6. 32.Castillo, S., “Advances in the recovering of spent lithium battery compounds”, Journal of Power Sources, 112(1): 247-254 (2002).
    連結:
  7. 33.Cheng, C. H., Yao, C. Y., Hung, W. M., “Electrical Properties Study of Electrolyte in Lithium Rechargeable Battery”, Chinese Journal of Materials Science, 26(1):81-83(1994).
    連結:
  8. 34.Campbell, D.A., Dalrymple, I.M., Sunderland, I.G., Tilston, D., “The electrochemical recovery of metals from effluent and process streams”, Conservation and Recycling, 10, 25-33(1994).
    連結:
  9. 35.Contestabile, M. S., Panero, Scrosati, B., “A laboratory-scale lithium-ion battery recycling process”, Power Sources, 92(1-2): 65-69 (2001).
    連結:
  10. 36.Contestabile, M., Panero, S., “A laboratory-scale lithium battery recycling processl”, Journal of Power Sources, 83(1-2):75-78(1999).
    連結:
  11. 39.Ju, L. K. and Verma, A., “Characteristics of Lactic Acid Transport in Supported Liquid Membranes,” Sep. Sci. and Technol., 29, 2299-2315 (1994).
    連結:
  12. 40.Kang, J., Senanayake, G., “Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272”, Hydromentallurgy, 100(3-4):168-171(2009).
    連結:
  13. 41.Kawakami, S., “Method for recovering lithium cell materials”, 1999-03-16.
    連結:
  14. 42.Kim, D. S., “Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries”, Journal of Power Sources, 132(1-2):145-149(2004).
    連結:
  15. 43.Komasawa, I., Otake, T., Ogawa Y., “The Effect of Diluent in the Liquid-Liquid Extraction of Cobalt and Nickel Using Acidic Organophosphorus Compounds”, J. Chem. Eng. Japan, 17(4) : 410-417 (1984).
    連結:
  16. 44.Lain, M. J., “Recycling of lithium ion cells and batteries”, Journal of Power Sources, 97, 736-738 (2001).
    連結:
  17. 45.Lee, C. K. and Rhee, K. I., “Preparation of LiCoO2 from spent lithium-ion batteries”, Journal of Power Sources, 109(1):17-21(2002).
    連結:
  18. 46.Lee, C. K. and Rhee, K. I., “Reductive leaching of cathodic active materials from lithium ion battery wastes”, Hydrometallurgy, 68(1-3):5-10(2003).
    連結:
  19. 47.Marcus, Y., “Diluent Effects in Solvent Extraction”, Solvent Extr. Ion Exch, 7(4), 567-575 (1989).
    連結:
  20. 48.Marcus, Y., “Diluent Effects in Solvent Extraction”, Solvent Extr. Ion Exch, 7(4), 567-575 (1989).
    連結:
  21. 49.Mehmet, K., Servet, T. B. T., Turgut, Y L., “The SolventExtraction of Boron with Synthesized Aliphatic 1,3-Diols: Stripping and Extraction Behavior of Boron by 2,2,5-Trimethyl-1,3-hexanediol ”, Solvent Extr. Ion Exch, 22, 879-911 (2005).
    連結:
  22. 50.Mishra, D., “Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans”, Waste Management, 28(2): 333-338 (2008).
    連結:
  23. 53.Paulion, J. F., Busnardo, N. G. and Afonso, J. C., “Recovery of valuable elements from spent Li-batteries”, Journal of hazardous materials, 150(3):843-849(2008).
    連結:
  24. 54.Pingwei, Z., Toshiro, Y., Osamu, I., Toshishige, M., Suzuki, K. I., “Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries”, Hydrometallurgy, 47, 259-271(1998).
    連結:
  25. 55.Scott, A.C., Pitblado, R.M., Barton, G.W., “Experimental determination of the factors affecting Zinc electrowinning efficiency”, Journal of Applied Electrochemistry, 18 , 120-127(1988).
    連結:
  26. 56.Shin, S. M., “Development of a metal recovery process from Li-ion battery wastes”, Hydrometallurgy, 79(3-4): 172-181(2005).
    連結:
  27. 57.Teresa M., Reis, A., Jorge, C., “ Kinetic Studies of Zinc Extraction from Sulfate Solutions with bis(2-Ethylhexyl)thiophosphoric Acid”, Sep. Sci. and Technol., 39, 3691-3710 (2004).
    連結:
  28. 58.Timothy, J. B., David, I., Todd, M. L., Cory, J. T., Mark, A. R., Karel, V., Daniel, H. D., “Rechargeable Lithium Battery Cathodes. Nonaqueous Synthesis, Characterization, and Electrochemical Properties of LiCoO2”, Chem. Mater., 10, 220-2276(1998).
    連結:
  29. 59.Tricoli, V., Vatistas, N., Marconi, P. F., “Removal of silver using graphite-felt electrodes”, Journal of Applied Electrochemistry, 23, 390-392(1992).
    連結:
  30. 61.Whittingham, M.S., “Lithium batteries and cathode materials”,Chem. Rev, 104(10):4271-4302(2004).
    連結:
  31. 66.Zhang, P., “Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries”, Hydrometallurgy, 47(2-3): 259-271 (1998).
    連結:
  32. 1.王雅琪,以二(2-乙基己基)磷酸含浸樹脂自水溶液中吸附錳離子之動力學研究,碩士論文,國立台北科技大學(2006)。
  33. 2.王曉峰、孔祥華等,「鋰離子電池中貴重金屬的回收」,電池,第31卷,第1期,第14-15頁(2001)。
  34. 3.申勇峰,從廢鋰離子電池中回收鈷,有色金屬,第54卷,第4期,第69-70,771頁(2002)。
  35. 4.吳芳,從廢舊鋰離子二次電池中回收鈷和鋰,中國有色金屬學報,第14卷,第4期,第697-701頁(2004)。
  36. 5.呂小三、雷立旭,一種廢舊鋰離子電池成份分離的方法,電池,第37卷,第1期,第79-80頁(2007)。
  37. 6.周子仁,日本二次鋰電池的市場及技術現況,工業材料154期(1999)。
  38. 7.林俊仁、範昌等,從廢鋰離子電池中回收金屬的方法,財團法人工業技術研究院,CN,上海智信專利代理有限公司,01130735.8(2001)。
  39. 8.林聖富,楊得仁,黃榮茂,王禹文編譯,“化學化工百科辭典”,曉園出版社(1887)。
  40. 9.金玉健,從廢棄鋰離子電池中回收鈷的研究,碩士論文,武漢理工大學(2006)。
  41. 10.金泳勛等,用浮選法從廢鋰離子電池中回收鋰鈷氧化物,國外金屬礦選礦,第40卷,第7期,第32-37頁(2003)。
  42. 11.南俊民、韓東梅等,溶劑萃取法從廢舊鋰離子電池中回收有價金屬,電池,第34卷,第4期,第309-311頁(2004)。
  43. 12.秦毅紅、齊申,有機溶劑分離法處理廢舊鋰離子電池,有色金屬(冶煉部分),第1期,第13-16頁(2006)。
  44. 13.張驍君,廢鋰離子電池資源化回收利用研究,碩士論文,同濟大學環境科學與工程學院(2009)。
  45. 14.陳明傑,廢鋰電池資源再生之研究,碩士論文,大葉大學(2002)。
  46. 15.陳松薰,以萃取劑D2EHPA含浸樹脂萃取銀粒子之研究,國立臺北科技大學化工所碩士論文(2003)。
  47. 16.陳柏蒼,臭氧改質Amberlite XAD-4樹脂對半導體製程中晶圓表面之銅離子去除,國立臺北科技大學材料及資源工程所碩士論文(2003)。
  48. 17.陳鉉淑,以萃取劑D2EHPA含浸樹脂萃取銅離子之平衡及動力學研究,國立臺北科技大學化工所碩士論文(2004)。
  49. 20.黃妙如、林坤讓、許明華,我國廢乾電池回收現況與資源再生市場供需評估,工業污染防治,第85期(2003)。
  50. 21.黃定加和蔡徳華,支撐式液膜分離水溶液中金屬離子之研究,科學發展月刊,17(11),1291-1314(1989)。
  51. 22.楊長榮,鋰鈷二次電池電化學特性研究,工業材料157期(2000)。
  52. 23.劉云建,鈷酸離原位再生的研究及其應用,碩士論文,中南大學(2006)。
  53. 25.蔡德華,以溶劑萃取和支撐式液膜分離鈷(Ⅱ)和鎳(Ⅱ)之研究,國立成功大學化學工程研究所博士論文(1991)。
  54. 26.鄭洪河,鋰離子電池電解質,北京:化學工業出版社,第1-20頁(2007)。
  55. 27.賴耿陽,最新電池工學,復漢出版社(1990)。
  56. 28.薛立人,二次電池之回顧與展望,工業材料146期(1999)。
  57. 30.“Battery Lesson Plan”, created by Keep Indianapolis Beautiful(1996).
  58. 37.Jing-li, H. and Qing-guo, L., “Study on a new sol-gel method using citrate as complex reagent”, Chinese Journal of Power Sources, 25(3):211-213(2001).
  59. 38.Joseph, A. C., “Performance of Lithium-ion Battery Systems”, SANYO Energy(U.S.A) Corporation, 2001.
  60. 51.Paasivirta, J., “Chemical Ecotoxicology”, Lewis Publishers Inc(1991).
  61. 52.Parthasaradhy, N.V., “Practical electroplating handbook”, Prentice-Hall, Inc. (USA), 1444(1989).
  62. 60.Warshawsky, A., Patchornik, A., “Recent developments in metal extraction by solvent impregnated resins”, The Theory and Practice of Ion Exchange;Streat, M. (Editor); The Society of Chemical Industry, London,1976; Chapter 38.21. Y. Guan,and X.Y.Wu,“The Theory and application of solvent-impregnated resins”, Ion Exchange Adsorption, 6(1), 60-67 (1990).
  63. 62.Xing-Jie, W., “Synthesis and Characterization of LiCoO2 Electrode Material by Citrate Sol-gel Method”, Chinese Joural of Inorganic Chemistry, 19(6):603-608(2003).
  64. 63.Xiuqin, O., “Progress in recovery technology of waste lithium Ion battery”, Inorganic Chemicals Industry, 37(9): 11-14(2005).
  65. 64.Yun, L. X., Guangyan and Xiaowu, Y., “Research on the recovery technology of spent lithium ion batteries”, Renewable Resources and Recycling Economy, 1(3):36-39 (2008).
  66. 65.Zeqiang, P. and Shenghai, Y., “Preparation of Cobalt Product Using Scraps of Co-Li Film”, Chinese Journal of Rare Metals,26(1):39-42(2002).
Times Cited
  1. 許荏賓(2016)。溶劑萃取分離廢二次鋰電池有價金屬。朝陽科技大學環境工程與管理系學位論文。2016。1-78。
  2. 余尚益(2016)。以具分散反萃取相支撐式液態薄膜分離並回收廢棄鋰電池內鈷之研究。中原大學生物環境工程研究所學位論文。2016。1-102。
  3. 張峻昇(2017)。溶液中鈷離子與鎳離子之高效率萃取分離之研究。朝陽科技大學環境工程與管理系學位論文。2017。1-69。