Title

有機農業廢棄物應用於能、資源再利用推展之研究

Translated Titles

Utilization promotion of energy and resource in organic agricultural waste

Authors

蕭國柱

Key Words

有機農業廢棄物 ; 厭氧消化 ; Organic-agricultural waste ; Anaerobic digestion

PublicationName

朝陽科技大學環境工程與管理系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

羅煌木

Content Language

繁體中文

Chinese Abstract

農業可利用之生質資源有農、林、漁、牧業之有機廢棄物與廚餘等,此大量之有機生質能源可經熱處理與生物處理,可轉換成可利用之蒸氣、電力與甲烷與氫氣能源,有機廢棄物部份可用物質則加以回收利用。適合台灣的有機廢棄物處理方式,應是將其回收進行厭氧消化處理,以達到減量與回收能源之目的。因此有機廢棄物如廚餘、農業廢棄物及污水下水道污泥等都是十分適合的共消化對象。有機廢棄物厭氧醱酵過程,所產生之氣體中約有65%為甲烷氣,因此,近幾年來世界各為紛紛興建有機廢棄物生物厭氧醱酵處理廠。國外已有許多有機固體廢棄物厭氧消化處理廠,有機廢棄物進行分選、破碎與前處理後,進行厭氧醱酵,所產生之氣體可供瓦斯燃料或燃燒發電,以及廢棄物堆肥於國內做為肥料使用之效益評估,德國慕尼黑為世界最成功回收應用計畫之例子。 本研究將建立一套有效處理有機固體廢棄物且能源化及資源化之方法,實驗將以廚餘、都市污泥、都市廢棄物與農業廢棄物等作為實驗材料,以500 mL之厭氧反應槽進行並將依固體物停留時間進行進料與出料半連續式實驗,每日將監測產氣量、pH、氧化還原電位(ORP)、導電度(EC)、鹽度(Salinity)、總固體物TS與揮發性固體物VS等各項物理化學參數。 本研究將農業有機固體廢棄物細分為:稻殼、稻稈、花卉殘渣、果菜殘渣、牡蠣殼、漁業殘渣、禽畜糞、禽畜殘渣八大項,分別以單一或以混和方式進行批次厭氧消化實驗,並以污水廠之厭氧污泥作為有機物之基質。厭氧處理模廠進料量將以過去研究所獲得的較佳組合SRT 20天進行實驗與進料濃度的調整。研究發現,於八種有機固體廢棄物中以禽畜殘渣作為厭氧槽之基材,其產氣效率最為顯著70天可產2868 mL之氣體產量,平均可產40.97 mL,其遠高於實驗中另外7種有機固體廢棄物,並且,於70天實驗結束後仍可維持均值之產氣量。pH值方面,介於6.5 ~ 7.5之間為有助於微生物生長之環境,而禽畜殘渣雖有酸化之現象,但實驗中所加入之基質為弱鹼性,其可將pH值穩定於6.6 ~ 7.4 之間,為微生物有益生長之範圍。比較8種有機固體廢棄物後,以禽畜殘渣之產氣量最高且穩定,pH值也可維持於微生物有益之生長環境,故以禽畜殘渣作為厭氧消化槽主要基質之可行性較高。

English Abstract

Agriculture can use biomass concentrated resources from waste of farming, forestry, fishery and animal husbandry…etc and kitchen waste., those large amount of organic biomass energy can be converted into vapor or electricity and methane and hydrogen energy by heat and biological processing, organic waste will be recycled some of the available material utilization. Organic waste processing methods is suitable for Taiwan which is to carry out its recovery anaerobic fermentation processing and to achieve the purpose of the abatement and recovery of energy. Therefore, organic waste such as food waste, agricultural waste and sewage sludge and others is very suitable for co-digestion object. While anaerobic fermentation of organic waste gas process, it is arising in about 65% of the methane gas. Thus, for recent years some countries have built biological anaerobic fermentation of organic waste treatment plant. It has anaerobic digestion of organic solid waste processing plant, organic waste carried sorting, crushing and after preprocessing, carry out anaerobic fermentation, methane gas generated from available fuel or combustion power generation, and waste composting efficiency gains in the domestic fertilizer use as an evaluation . There is a good example in Munich, Germany for the world's most successful application of the recovery plan. It proves the correctness of this research is correct. The research sets up an effective method for the processing of organic solid waste and energy technology and resources, the experiment will be food waste, What we need for the experimental materials is municipal sludge, municipal waste and agricultural waste, it bases on 500 mL of anaerobic and the reaction vessel for a period time of solids in accordance with the feed material and the semi-continuous experiments. It will be monitored daily by gas production, pH, redox potential (ORP), conductivity (EC), salinity (Salinity), to analysis of chemical oxygen demand (COD), TS, VS, and other physical and chemical parameters every single week. In this research, organic-agriculture solid waste: there is main 8 different kind of resources: rice, rice straw, flowers residue, fruit and vegetable residues, oyster shells, fishing residues, livestock manure, poultry residue, respectively, by way of a single or mixed batch anaerobic digestion experiments, and the anaerobic sludge wastewater processing plant as a matrix organics. Anaerobic treatment-plant feed rate will get better combination Institute SRT for 20 days to adjust experiment with feed concentration. A preliminary study found that in eight of solid organic waste to livestock residue as substrate anaerobic tank, the gas efficiency of its most significant 112 days can produce 8147 mL of gas production, average yield 72.7 mL / a day, which is far another seven kinds of experiments in higher organic solid waste, and end of the experiment after 112 days the mean of gas production can be on going. About pH, between 6.5 to 7.5, In order to help the growth of the microorganism environment, although the phenomenon of livestock residue was acidified, in the experiment of the substrate has been added to alkaline, which can stabilize the pH at 6.6 between ~ 7.4, which is the range to grow of beneficial microorganisms. Comparison of eight kinds of organic solid waste, the residue with the highest gas production livestock and stable and its pH measurement can also be beneficial to the maintenance of microbial growth environment, so to livestock residues as high feasibility of anaerobic digestion tank main matrix.

Topic Category 理工學院 > 環境工程與管理系
工程學 > 土木與建築工程
Reference
  1. 1.Duku, M. H., Gu, S., and Hagan, E. B., “A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable and Sustainable Energy Reviews,” Vol. 15, pp. 404-415(2011).
    連結:
  2. 2.Panwar, N. L., Kaushik, S. C., and Kothari, S., “Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews,” Vol. 15, pp. 1513-1524(2011).
    連結:
  3. 3.Lo, H. M., Liao, Y. L., “The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites,” Journal of Hazardous Materials, Vol. 142, pp. 512–519(2007).
    連結:
  4. 4.Lo, H. M., Kurniawan, T. A., Sillanpaa, M. E. T., Pai, T. Y., Chiang, C. F., Chao, K. P., Liu, M. H., Chuang, S. H., Banks, C. J., Wang, S. C., Lin, K. C., Lin, C. Y., Liu, W. F., Cheng, P. H., Chen, C. K., Chiu, H. Y., and Wu, H. Y., “Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors,” Bioresource Technology, Vol. 101, pp.6329-6335(2010).
    連結:
  5. 5.Lo, H. M., Chiang, C. F., Tsao, H. C., Pai, T. Y., Liu, M. H., Kurniawan, T. A., Chao, K. P., Liou, C. T., Lin, K. C., Chang, C. Y., Wang, S. C., Banks, C. J., Lin, C. Y., Liu, W. F., Chen, P. H., Chen, C. K., Chiu, H. Y., Wu, H. Y., Chao, T. W., Chen, Y. R., Liu, D. W., and Lo, F. C., “Effects of spiked metals on the MSW anaerobic digestion,” Waste Management & Research, Vol. 30, pp.32-48(2012).
    連結:
  6. 16.林志棟、施堅仁,「焚化底碴應用於公共工程之研究」,行政院公共工程委員會研究報告(2004)。
    連結:
  7. 17.鄭健雄,蔡宜峰,「台中區農推專訊145期」,台中區農業改良場(1995)
    連結:
  8. 21.經濟部能源局,2009,生質燃料技術開發與推廣計畫(第四年度)期末報告,工業技術研究院。
    連結:
  9. 參考文獻
  10. 6.張思凡,2000,「都市生活污水處理廠污泥資源化再利用之回顧及展望」,環境工程會刊,中華民國環境工程學會,第11 卷,第二期。
  11. 7.邱素芳,「以高溫厭氧共消化有機廢棄物之研究」,碩士論文,國立屏東科技大學環境工程與科學研究所,屏東(2003)。
  12. 8.陳文欽,「厭氧生物消化程序處理有機固體廢棄物暨資源化技術探討」,行政院國家科學委員會補助專題研究計畫成果報告,新竹(2009)。
  13. 9.林雲琴,王德漢,「有機廢棄物厭氧消化處理技術研究進展」,廣州華南農業大學資源環境學院環境科學與工程系,第二十六卷,第三期,第55-59頁,廣州(2008)。
  14. 10.賴俊吉,陳勝一,「可堆肥廚餘之厭氧醱酵程序前段破碎處理單元開發」,行政院環境保護署環保科技育成中心計畫成果報告,高雄(2009)
  15. 11.徐孝先,「焚化爐灰燼微奈米製備與特性分析及其與垃圾基質共同厭氧 消化研究」,碩士論文,朝陽科技大學環境工程與管理研究所,台中(2008)。
  16. 12.林秋裕,環境工程微生物學,二版,國彰出版社,台中(1997)。
  17. 13.林雲琴,王德漢,「有機廢棄物厭氧消化處理技術研究進展」,廣州華南農業大學資源環境學院環境科學與工程系,第二十六卷,第三期,第55-59頁,廣州(2008)。
  18. 14.賴奇厚,「營養鹽對厭氧產氫之影響」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
  19. 15.行政院環保署,「環保各類統計年報」,台北(2013)。
  20. 18.陳文卿,鄭幸雄,郭文健,陳文欽,張祖恩,謝炎恭,李松宏,孫世勤,劉宗諭,梁永瑩,李紀瑩,林上湳,2009,「推動廚餘、水肥、養豬廢水及生活廢水產生之污泥集中處理及生質能源再利用可行性評估計畫」,行政院環境保護署期末報告。
  21. 19.陳芃,2008,數字會說話-從能源統計看減碳與能源政策,經濟部能源局,能源報導,資料來源網址: http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=200812&Page=23&keyword=
  22. 20.經濟部,2009,再生能源發展條例。
  23. 22.經濟部,2012,中華民國101年度再生能源電能躉購費率及其計算公式。
  24. 23.張福傳,張美琴,蘇郁雅,2011,台灣有機廢棄物厭氧醱酵產製生質能之期待與展望,化工技術,第19卷,第11期,第124-137頁。