透過您的圖書館登入
IP:3.146.152.99
  • 學位論文

新型三苯胺銅保護基之合成與電化學研究

Synthesis of Novel Triphenylamine Protective Groups for Copper and Electrochemical Research

指導教授 : 梁文傑

摘要


在本論文中,合成了一系列三苯胺銅保護基,其結構均包含胺基(amino, -NH2)螯合基團,並接上不同烷基鏈、苯環以及多苯環的芘 (pyrene) 作為取代基進行結構上的修飾,並就其電化學行為進行探討。 由於本研究所設計的螯合基團以及零價銅 (Cu0) 都是屬於多電子特性,因此在第一部分的系統中,加入不同的氧化劑,使得銅保護基成為自由基陽離子物種,即可進行氧化螯合基團,進一步和銅形成有效鍵結,且具有再現性;第二部分則是利用三苯胺本身具有可以電致聚合的特性,加入不同的有機酸,讓有機酸先在銅上形成一鈍化層,再讓三苯胺銅保護基電沉積於銅表面上,達到吸附的效果。作用於最佳化的反應條件下,在 3.5 wt. % 氯化鈉水溶液中進行抗腐蝕之測試,以接觸角 (Contact angle) 、掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 、X射線光電子能譜 (X-ray Photoelectron Spectroscope, XPS) 、循環伏安法 (Cyclic Voltammetry, CV) 、紫外光-近紅外光光譜 (UV-NIR Spectrometer) 以及浸潤測試 (immersion Test (Weight loss)) ,證明實驗結果。

並列摘要


We successfully synthesized a series of the triphenylamine based molecules for protection of copper and used electrochemical methods to examine the anticorrosive behavior. All structures contained amino (-NH2) chelating group and connected to alkyl chain, benzene ring or polycyclic aromatic functional groups (pyrene) as substituents. Because the design of the chelating group have electron rich properties, as well as copper, we applied two methods to improve the binding ability and adsorption coverage. We used surface characteristic methods and electrochemical measurements to observe these phenomena of unique molecules. These results are consistent with our expection and prove that designed molecules having potential for protection of copper. In the chapter 3, it is confirmed that the chelating groups of the compounds can be oxidized, so that triphenylamine protective groups turn to radical cation species, having electron poor character and can connect to copper to form effective bindings. In the chapter 4, we tried to use a series of organic acids via electrochemical processes letting triphenylamine copper protective group become another forms, adsorbed on to the surface of the copper tightly. The decrease of adsorption coverage of triphenylamine based molecules were in order of:non-modified group > methyl > phenyl > tert-butyl > pyrene. Both system’s results are similar to, and it can confirm that triphenylamine derivatives have the ability to serve as protective groups for copper.

參考文獻


27. S.T. Huang, D.J. Liaw, L.G. Hsieh, C.C. Chang, M.K. Leung, K.L. Wang, W.T. Chen, K.R. Lee, J.Y. Lai, L.H. Chan, C.-T. Chen, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 47, 6231-6245 (2009).
31. (a) Stephen D. Cramer, Bernard S., and Jr. Covino, ASM Handbook Volume 13A: Corrosion: Fundamentals, Testing, and Protection, ASM International, 2003, p419-486; (b) M. Finšgar and I. Milošev, Materials and Corrosion, 2011, 62, 956; (c) M. Sherif El-Sayed, Int.J. Electrochem. Sci., 2012, 7, 1482.
44. (a) Stephen D. Cramer, Bernard S., and Jr. Covino, ASM Handbook Volume 13A: Corrosion: Fundamentals, Testing, and Protection, ASM International, 2003, p419-486; (b) M. Finšgar and I. Milošev, Materials and Corrosion , 2011, 62, 956; (c) M. Sherif El-Sayed, Int.J. Electrochem. Sci., 2012, 7, 1482.
54.(a) John E. Cromwell, III, Roger D. Colton, Scott J. Rubin, Charles N. Herrick, Jane Mobley, Kelly Reinhardt, and Rea Wilson, Foundation of Water Research, 2010; (b) M.M. Al-Abdallah, A.K. Maayta, M.A. Al-Qudah and N.A.F. Al-Rawashdeh, The Open Corrosion Journal, 2009, 2, 71-76.
30. (a) S. Yuan, S. O. Pehkonen, B. Liang, Y. P. Ting, K. G. Neoh, and E. T. Kang, Corros. Sci., 2011, 53, 2738; (b) D. L. Schmidt, C. E. Coburn, and M. D. Benjamin, Nature, 1994,368, 39.

延伸閱讀