透過您的圖書館登入
IP:3.143.168.172
  • 學位論文

二氧化鈦空心微米球的製備及其應用

Fabrication of TiO2 hollow microspheres and their applications

指導教授 : 簡淑華

摘要


在本研究中我們利用兩步溶劑熱的方式合成具有空心結構的二氧化鈦微米球。在第一步的溶劑熱反應,我們加入硫酸氧鈦、乙醇、甘油及乙醚在110oC下反應四小時,此時會生成實心結構的有機鈦體前驅物。在第二步的溶劑熱反應中,我們調整酒精濃度及反應時間,最後可以得到具有完整結構的空心二氧化鈦球體。藉由X光粉末繞射儀、氮氣等溫吸脫附、場發射掃描式電子顯微鏡及高解析度穿透式電子顯微鏡等鑑定方法,我們可以知道此兩步溶劑熱的方式合成之二氧化鈦球體具有銳鈦礦的晶相、310 m2/g的表面積、1-2微米的直徑及空心的內部結構。我們將製備好的二氧化鈦空心微米球應用於染料敏化太陽能電池及光電催化水分解。 我們先以二氧化鈦空心微米球應用於染料敏化太陽能電池光陽極,分別塗佈6微米及10微米兩種厚度進行測試,在使用N719染料作為敏化劑及AM 1.5模擬太陽光照射下(100 mW/cm2),其光電轉換效率分別為4.37%及5.61%。 在染料敏化太陽能電池系統中,二氧化鈦奈米顆粒扮演著吸附染料及傳遞電子的角色。近年來研究學者指出適當地摻入次微米二氧化鈦粒子可增加入射光的散射,進而提升光利用率。近期的研究更顯示添加具高表面積之二氧化鈦大尺寸粒子除了可增加入射光散射及光利用率外,亦可提高染料的吸附量,以更進一步提升染料敏化太陽能電池的光電轉換效率。因此我們將溶膠凝膠法所製備的二氧化鈦奈米顆粒(SG)應用於染料敏化太陽能電池光陽極,在使用N719染料作為敏化劑及AM 1.5模擬太陽光照射下(100 mW/cm2),得到光電轉換效率為7.14%;並於SG層上方塗佈上一層約250nm大小之次微米二氧化鈦粒子Merck Anatase (MA)或二氧化鈦空心微米球兩種具較大尺寸的二氧化鈦作為散射層,以組合成具雙層結構的染料敏化太陽能電池光陽極,可得到光電轉換效率分別為7.71%及8.20%。二氧化鈦空心微米球相較於次微米二氧化鈦粒子MA作為散射層可得到較高的光電轉換效率,高表面積的特性使其能吸附更多染料是主要的原因。 我們將二氧化鈦空心微米球應用於光電催化水分解之工作電極,並利用連續離子層吸附反應法(SILAR)將硫化鎘及硫化硒組裝至二氧化鈦上,以作為吸收可見光之光敏化劑。在硫化鎘的系統中,分別塗佈6微米及10微米兩種厚度二氧化鈦空心微米球層進行測試,我們發現塗佈6微米厚度的整體效率較高,並以進行五次SILAR過程之工作電極可得到最高之光電催化水分解效率3.86%;在硫化硒的系統中,則直接以塗佈6微米厚度二氧化鈦空心微米球層進行測試,以進行三次SILAR過程之工作電極可得到光電催化水分解效率4.55%。此外,我們於6微米厚度二氧化鈦空心微米球層上先進行五次SILAR過程鍍上硫化鎘,再進行一次SILAR過程鍍上硫化硒,可得到最高光電催化水分解效率5.13%。

並列摘要


Titania hollow microspheres (THMS) were prepared by a two-step solvothermal process. The solid titania precursor was formed in a solution containing TiOSO4, ethanol, glycerol and ethyl ether at 110oC for 4 h in the first step. In the second solvothermal step, it was found that the morphological integrity of the hollow microspheres could be controlled by varying the concentration of ethanol. We obtained uniform THMS in pure anatase phase, with 1∼2 μm diameter and 310 m2/g of surface area. All the samples were characterized by XRD, UV-Vis, N2 sorption isotherms, FESEM and HRTEM. In the present study, we have applied the prepared THMS to use in dye sensitized solar cells(DSSCs) and solar water splitting. In DSSCs, the THMS was used as a scattering layer atop the conventional TiO2 nanoparticle film. The solar energy conversion efficiency was significantly enhanced by nearly 15% as compared to that without THMS layer sensitized with N719 dye under AM 1.5 solar irradiation (100 mW/cm2). The improved light harvesting characteristics were due to dye adsorption capacity of the THMS and its high diffusion reflectance property which attest to the superior light scattering property. In the solar photoelectrocatalytic water splitting, considerably high photoconversion efficiencies of 3.86% was attained by the CdS quantum dots sensitized THMS and of 4.55% was reached by the CdSe quantum dots sensitized THMS that were prepared by SILAR process. By CdS and CdSe cosensitization of THMS, the highest efficiency of 5.13% was achieved. Accordingly, the titania hollow microspheres can be beneficial for application in solar energy conversion.

參考文獻


1. M. Grätzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
4. M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A 365 (2007) 993-1005.
5. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.
6. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev. 107 (2007) 2891-2959.
8. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature 261 (1976) 402-403.

延伸閱讀