透過您的圖書館登入
IP:100.26.35.111
  • 學位論文

管線挖埋回填區域鋪面強度檢驗之研究

Structure Capacity Evaluation for Utility Cuts

指導教授 : 周家蓓

摘要


為維護既有管線或新設管線,管線挖埋回填工程不可避免,然由於目前多數管線皆埋設於道路鋪面下方,反覆開挖回填嚴重影響道路鋪面服務績效,也造成鋪面維護管理的困難,因此,了解管線對管線挖埋工程對鋪面品質之影響為一重要課題。 行政院已於路平方案中推動相關措施改善,各縣市亦訂定道路挖掘管理條例,建立管線挖掘回填之施工標準程序,例如訂定管線深度下限、要求管溝回填材料強度、並規定於期限內完成路面修復工程等。但道路上仍常見與管線相關之破壞,推測除管線單位未依規範施作之外,可能為此三項目無法完整反應鋪面結構整體績效,故本研究建立一個評估鋪面整體結構強度之簡易檢驗方式,來瞭解管線挖埋對鋪面結構強度造成之影響。 本研究選擇使用輕型落重撓度儀建立一套於管線挖埋回填區域之結構強度檢驗方法,訂定針對管線挖埋回填區域鋪面強度檢測之合適之落重組合、施測點位及檢測程序,分別於管挖施作前,管挖完成假修復以及路面修復銑鋪完成等三階段對同一區域之多點位進行結構強度檢測,並發展檢測結果之溫度校估式,將檢測結果校估至同一基準上以利分析比較。研究於臺北市、新北市市區6個實際管線挖埋工程進行管挖前、中、及後三階段檢測及於其完工後持續維持約半年的檢測,由檢測結果得知,原鋪面整體結構強度E_LWD多為400至800 MPa,管線挖埋工程完工後管線挖埋回填區域之鋪面整體結構強度E_LWD因為填CLSM填充料而明顯提升至1200至1800 MPa。本研究另建立有限元素模型,模擬以輕型落重撓度儀檢測管線挖埋前後鋪面結構強度之變化,其模擬結果與實測結果具有相同趨勢且數值合理。故本研究建立之檢驗方法確實可反映管挖前後針對管挖區域檢驗鋪面結構之相對變化以及管線挖埋回填區域與未開挖區域之差異,並探討以其評估管線挖埋回填品質之可行性,有其應用價值。

並列摘要


Utility pipelines are essential facilities and most of them are separately placed underneath the urban roads in Taiwan. To install and maintain, pavement is repeatedly cut and excavated. In the consequence, the pavement service performance is impacted seriously and the pavement management becomes a challenge. To overcome this problem, Taiwan Executive Yuan promoted the Road Smoothing Project and requested each city/county municipal government must set the standards for requiring the minimum depth of pipeline, the quality of refill material, and the construction process. However, the results were not very effective. The pavement distresses related to utility cuts, such as the reflection cracking in the cut interface and the alligator cracking in the repair area, still appear frequently. This paper presents a study of using Light Weight Deflectometer (LWD) to establish an inspection method to evaluate the influence of utility cuts in pavement structural capacity. The appropriate combination of drop height and load plate size of LWD, the templates of testing points, and inspection procedure were studied and recommended. Temperature adjustment model of the LWD test result was also developed by field tests in this research. In this study, seven in situ utility cuts constructions were conducted the LWD test in three stages, i.e. before utility cuts, after temporary repair, and after formal milling and overlay repair. In addition, four of them did the extra LWD test every two months after formal milling and overlay repair for about half year. According to the test results, the original structure capacity E_LWD were about 400 to 800 MPa, and the structure capacity E_LWD after utility cuts construction became 1200 to 1800 MPa due to using the Controlled Low Strength Materials (CLSM) as refilling materials. Moreover, the Finite Element (FEM) model of this inspection method were created to simulate the LWD tests.

參考文獻


12. 高健洋, 分析道路管溝底層回填料之沉陷, in 土木工程學系專班. 2010, 成功大學.
9. 許自儀, 市區道路挖掘對服務品質影響之研究, in 土木工程學研究所. 2005, 國立臺灣大學.
10. 魏光譽, 縣市政府提升道路挖掘埋設維生管線管理成效之研究-以桃園縣為例, in 土木工程學系碩士在職專班. 2008, 國立中央大學.
2. Arudi, R., B. Pickering, and J. Flading, Planning and implementation of a management system for utility cuts. Transportation Research Record: Journal of the Transportation Research Board, 2000(1699): p. 42-48.
11. Chow, C. and V. Troyan, Quantifying damage from utility cuts in asphalt Pavement by using San Francisco's Pavement Management data. Transportation Research Record: Journal of the Transportation Research Board, 1999(1655): p. 1-7.

延伸閱讀