透過您的圖書館登入
IP:52.14.0.24
  • 學位論文

探討第二、三列過渡金屬錯合物之光物理性質及其應用

Studies of the photophysical properties and applications in second- and third–row transition metal complexes

指導教授 : 周必泰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文中,我主要研究一系列銥、銀與金之過渡金屬錯合物的光物理性質,主要分成三個部份。第一、有機發光二極體之所以受注目是因為擁有全光色、平面板、固態光源等特性,具有廣闊的應用前景。近來,過渡金屬錯合物為燐光發光材料開啟一道曙光,除了能獲得三重態和單重態的激子,也能達到極高的發光效率和較長的生命期。 第二、將diphosphino-alkynyl gold錯合物與一價銀離子反應可形成一系列新的異種clusters,其通式為(PhC2Au)PPh2(C6H4)nPPh2(AuC2Ph) (n = 0, 1, 2, 3),其中錯合物1可以形成兩種不同的固態堆疊,黃色粉末1a和橘色粉末1b,然而溶在CH2Cl2卻表現出相同的兩包放光,分別在575 nm和770 nm。從變溫實驗 (298-200 K)及相同的激發光譜來看,我們可以推測1a和1b在激發態產生結構變形。這些異種錯合物利用龐大的輔助配位基有效地保護中心金屬原子,在三重激發態時,不會被氧氣經由碰撞的形式代謝掉能量,放出強的燐光。然而錯合物3不論在有氧或無氧的情況,量子效率都可以達到1,因此利用z-scan去量測它的雙光子吸收,結果顯示45 GM的雙光子係數和一般的有機染料分子相近。 最後探討一系列含有8個金原子的純金錯合物,室溫下在溶液中可以達到92%的量子效率,在晶體中可以到達86%,這些極高的燐光發光性質,期望可以應用在OLED、luminescent sensors及生物顯影方面。

關鍵字

金屬錯合物 燐光 雙光子 OLED

並列摘要


We studied the photophysical properties of transition metal complexes including Ir(III), Ag (I) and Au(I). There are three topics in this thesis. First, Organic light-emitting diodes (OLEDs) have drawn great attention because of their applications in full-color, flat-panel displays and solid-state lighting. Within the past decade, organo-transition metal complexes have emerged as promising phosphorescent emitters for OLEDs since these complexes are able to harvest both triplet and singlet excitons and achieve the required high device efficiency and long lifetime. Second, reactions between the diphosphino-alkynyl gold complexes (PhC2Au)PPh2(C6H4)nPPh2(AuC2Ph) (n = 0, 1, 2, 3) with Ag+ lead to the formation of a new family of heterometallic clusters 1-4. Complex 1 for n = 1 seems to form two classes of solid packing, one with yellow (1a) and the other with orange color (1b) appearance. Despite distinctly different emission in solid, complexes, 1a and 1b exhibit same luminescence spectra in solution (e.g. CH2Cl2), consisting of dual emission maximized at 575 nm and 770 nm. Both emission bands reveal the same relaxation dynamics throughout temperature 298-200 K. This, together with identical excitation spectrum, leads us to conclude a structural deformation between 1a and 1b in the excited state. Perhaps the most striking feature of the heterometallic clusters’ luminescence is their high emission quantum yield and the phosphorescence intensity is nearly free from O2 quenching. The central heterometallic alkynyl clusters, are largely protected by the bulky ancillary and bridging ligands. Complex 3 was also examined for its two-photon absorption properties via a Z-scan experiment. The TPA cross section is thus deduced to be 45 GM, which is in the same magnitude as that of the regular organic dyes. Last, the unprecedented, purely gold(I) alkynyl-diphosphine clusters 1–3 demonstrate intense room-temperature phosphorescence with maximum quantum efficiency of 92% in solution and 86% in solid and thermally dependent emission in the crystalline form, attributed to the crystal lattice arrangement. The highly emissive (phosphorescence) properties render a latent potential for the modern technological applications, e.g. organic light emitting diodes, luminescent sensors and bioimaging labels.

並列關鍵字

metal complexes Ir(III) Ag(I) Au(I) phosphorescence two-photon absorption OLED

參考文獻


12. Y.-C. Chiu, J.-Y. Hung, Y. Chi, C.-C. Chen, C.-H. Chang, C.-C. Wu, Y.-M. Cheng, Y.-C. Yu, G.-H. Lee, P.-T. Chou, Adv. Mater. 2009, 21, 2221.
13. Y.-C. Chiu, Y. Chi, J.-Y. Hung, Y.-M. Cheng, Y.-C. Yu, M.-W. Chung, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-C. Wu, H.-Y. Hsieh, ACS Appl. Mater. Int. 2009, 1, 433.
15. Y.-C. Chiu, C.-H. Lin, J.-Y. Hung, Y. Chi, Y.-M. Cheng, K.-W. Wang, M.-W. Chung, G.-H. Lee, P.-T. Chou, Inorg. Chem. 2009, 48, 8164.
3. (a) J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 1713. (b) S.-C. Lo, G. J. Richards, J. P. J. Markham, E. B. Namdas, S. Sharma, P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater. 2005, 15, 1451. (c) I. Avilov, P. Minoofar, J. Cornil, L. De Cola, J. Am. Chem. Soc. 2007, 129, 8247. (d) S.-J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 2008, 20, 1691. (e) E. Orselli, R. Q. Albuquerque, P. M. Fransen, R. Froehlich, H. M. Janssen, L. De Cola, J. Mater. Chem. 2008, 18, 4579.
25. Teo, B. K.; Xu, Y. H.; Zhong, B. Y.; He, Y. K.; Chen, H. Y.; Qian, W.; Deng, Y. J.; Zou, Y. H. Inorg. Chem. 2001, 40, 6794-6801.

延伸閱讀