透過您的圖書館登入
IP:18.116.51.117
  • 學位論文

合成高品質化學氣相沉積石墨烯並應用於膜相關之生物感測

Synthesis of High Quality Graphene by Chemical Vapor Deposition for Applications in Membrane-related Biosensing

指導教授 : 陳逸聰

摘要


自石墨烯(graphene)於2004年被發現以來,除其獨特的物理性質受到各領域的重視外,石墨烯所具有之廣泛應用性也受到許多關注。在本研究中,關注於發展液相閘極石墨烯場效電晶體(solution-gated graphene filed-effect transistor),做為生物感測平台。 本研究分為兩部分,前半部為石墨烯之合成與鑑定。我們採用了狹縫狀腔體的設計改善了現有的之化學氣相沉積系統 (chemical vapor deposition),透過改變氣體於合成環境中之流場,大幅提升石墨烯合成之品質。並透過有限元素方法模擬,佐證了流場改變對石墨烯合成的影響。另外使用光學顯微鏡、電子顯微鏡、原子力顯微鏡、拉曼光譜和聚焦電子束繞射,鑑定所合成的為高品質之石墨烯 論文後半部分將自行合成之石墨烯製備成場效電晶體元件,並整合微流道系統建構液相之量測環境。我們以囊泡融合法(vesicle fusion)製備支撐性磷脂雙層(supported-lipid bilayer)於石墨烯元件表面,做為與模相關之生物感測平台。 基於此架構,本研究驗證兩個不同之應用。首先為磷脂質脂解酶D (phospholipase D) 水解磷脂雙層之生化反應,驗證石墨烯可以感測到水解反應所引起的電荷變化。接著驗證修飾神經節苷脂GM1的石墨烯元件,可以偵測與霍亂毒素 (cholera toxin) 的結合反應,進一步證實了石墨烯場效電晶體可做為蛋白質與膜交互作用之感測平台。

並列摘要


The theme of this thesis focuses on the application of lipid bilayer-modified graphene field-effect transistors (G-FETs) for the detections of chemical/biological activities of membrane proteins. Compared with one-dimensional (1D) nanowires to be used as a conducting channel in FET biosensors, the two-dimensional (2D) graphene sheets of G-FETs possess a larger and more stable interface with lipid bilayers, thus providing a convenient sensing platform with advantageous device designs in biological studies. The first part of this thesis describes the device fabrication of G-FETs using high-quality, large-area graphene sheets synthesized from chemical vapor deposition (CVD) reaction. With a specially designed CVD reactor, the as-synthesized graphene sheets were produced within a confined reaction space, which significantly reduces the nucleation density and makes the formation of large-area, high quality graphene sheets possible. The second part of this thesis displays the biosensing capabilities of a lipid bilayer-modified G-FET. A lipid bilayer was deposited on a G-FET via a vesicle fusion method. In the studies, we have applied this lipid bilayer-modified G-FET to detect phospholipase D and cholera toxin. With electrical measurements of the lipid bilayer-modified G-FET, transfer-curve shifts and electrical conductivity changes can be obtained after interacting proteins come to react with the modified lipid bilayer. Our experimental results have demonstrated that G-FETs can serve as a sensitive platform for biorecognition and biosensing investigations, in particular, suitable for the study of biological activities of membrane proteins.

參考文獻


2. Wallace, P. R., The Band Theory of Graphite. Phys Rev 1947, 71 (7), 476-476.
3. May, J. W., Platinum Surface Leed Rings. Surf Sci 1969, 17 (1), 267-&.
4. Lu, X. K.; Yu, M. F.; Huang, H.; Ruoff, R. S., Tailoring graphite with the goal of achieving single sheets. Nanotechnology 1999, 10 (3), 269-272.
5. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191.
6. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008, 146 (9-10), 351-355.

延伸閱讀