透過您的圖書館登入
IP:18.223.107.149
  • 學位論文

氧化物與有機金屬錯合物單晶成長及其特性分析

Single Crystal Growth of Metal Oxides and Metal-Organic Coordination Complexes and Their Analyses

指導教授 : 劉如熹

摘要


本篇論文學習金屬氧化物與金屬有機錯合物之單晶生長及其特性分析量測。於金屬氧化物部分,採用助熔劑法生長多鐵材料TbMnO3和螢光粉LiSrPO4單晶。金屬有機錯合物部分,採用水熱法生長 [Zn2Cl4(μ-bipy)2]與[Zn2(IM)4•(DMF)]之近紫外光螢光粉。 在第一章中審視固體材料的生長方法,並展示其相應的屬性和應用以及學習研究之目標。在第二章中介紹單晶晶體生長實驗與晶體生長之觀測及分析所需的儀器、工具方法技術。第三章著重於多鐵材料TbMnO3晶體生長和晶體的特性探討。 TbMnO3為異相性晶體具自發極化其晶體結構為扭曲的鈣鈦礦結構,研究發現該材料具有龐大磁電和磁電容效應,可透過磁場來調控其極化方向,該材料具有未來重要科技應用潛力。第四章介紹LiSrPO4磷酸鹽單晶晶體的生長。稀土Eu2 +摻雜的LiSrPO4具有近紫外吸收和藍光發射特性,可使用在紫外LED螢光粉的應用。該化合物其X射線繞射標準圖譜計有JCPDS 053-1238和140-202,但此XRD標準圖譜並不完整,因此我們希望成長LiSrPO4單晶並解析其晶體結構以提供XRD標準圖譜。我們成功找到合適的助熔劑並成長LiSrPO4單晶。LiSrPO4晶體結構屬六方晶系,空間群P65和晶胞參數為a = 5.0040(2)Å,c = 24.6320(16) Å:V = 534.15(5) Å3,Z = 6。 LiO4和PO4四面體互相聯結形成三維的陰離子LiPO42-的框架,並沿c軸構成螺旋狀之螺旋通道結構而Sr2 +陽離子則位於此通道內。 在第五章以水熱法合成 [Zn2Cl4(μ-bipy)2] 金屬-有機錯合物之單晶並以單晶X射線繞射儀分析,確定[Zn2Cl4(μ-bipy)2]單晶結構,再量測分析探討該錯合物其發光特性。[Zn2Cl4(μ-bipy)2]金屬-有機錯合物具近紫外光吸收之螢光粉特性,並可單一成分直接吸收380nm近紫外光後發出白光光譜。 在第六章中研究探討[Zn2(IM)4•(DMF)]( IM:咪唑; DMF:二甲基甲酰胺)金屬-有機錯合物框架,使用DMF作為模板合成。此錯合物之ZnN4所形成之四面體的形態與沸石結構之矽氧四面體類似,此[Zn2(IM)4•(DMF)]聚合體在[010]方向觀測其主戀結構形成波浪形排列之拓撲,且主鏈與主鏈間還有咪唑配體連接,此結構具有優良的化學穩定性和熱穩定性。此錯合物呈現從350 nm至430 nm範圍寬廣的近紫外激發與波峰在445 nm寬廣的光致發光特性,具有近紫外光白色發光二極體用螢光粉的潛力。最後於第七章總結此論文研究。

並列摘要


In this thesis, we study the single crystal growth of metal oxides and metal -organic coordination complexes. To produce metal oxides, we use the flux method to grow multiferroic TbMnO3 and phosphoric LiSrPO4 single crystals. To produce metal -organic coordination complexes, we use the hydrothermal method to grow the phosphors Zn2Cl4(μ-bipy)2 and Zn2(IM)4•(DMF) . In Chapter 1, we review the growth methods for solid materials and demonstrate the corresponding properties and applications of the resulting products. The targets of this study are also described. In Chapter 2, we introduce the experimental procedures for crystal growth, as well as the characterization techniques, used in this study. The third chapter focuses on TbMnO3 crystal growth and characterization of the resulting crystals. TbMnO3 has a distorted perovskite structure with spontaneous polarization. Gigantic magneto-electric and magneto- capacitive effects, which may switch polarization by magnetic fields, are also found in TbMnO3. The fourth chapter discusses the growth of LiSrPO4. Rare earth Eu2+-doped LiSrPO4 has excellent near-UV absorption and blue-light emission that can be applied in UV-LEDs. The X-ray diffraction (XRD) pattern reported for LiSrPO4 is inconsistent with JCPDS No 053-1238 and 140-202. We find a suitable flux in which to grow LiSrPO4 single crystals. LiSrPO4 crystallizes to form a hexagonal structure with a space group of P65 and cell parameters a = 5.0040(2) Å, c = 24.6320(16) Å, V = 534.15(5), and Z = 6. The LiSrPO4 unit cell is composed of LiO4 and PO4 tetrahedra that form a three-dimensional LiPO42- anionic framework. This framework has a spiral-type helical channel structure along the c axis where Sr2+ cations are located. In the fifth chapter, we study organic metallic phosphors grown using the hydrothermal method to synthesize a metal-organic framework for Zn2Cl4(µ-bipy)2. The structure of the framework is determined by single-crystal XRD refinement. The Zn2Cl4(µ-bipy)2 coordination compound is a near-UV excitable phosphor. This compound is capable of producing white light as a single component. In the sixth chapter, a polymorph of Zn2(IM)4•(DMF) (IM: imidazolate; DMF: dimethyl formamide) frameworks is synthesized using a DMF template. The topology of the ZnN4 framework is similar to that of zeolite, with a chain of connected SiO4 tetrahedra. This polymorph has a zeolite-like structure and a wave-shape topology in the [010] direction. The main chain is connected to an IM ligand. The framework structure has excellent chemical and thermal stability. The framework also exhibits broad near-UV excitation ranging from 350 nm to 430 nm. Broadened photoluminescence emission is observed at 445 nm. This framework has great potential as a phosphor for applications in near-UV or UV white LEDs. We conclude our study in Chapter 7.

參考文獻


[5] Wang, S. L. “State-of the Art Single-Crystal X-Ray Diffractometer CCD System” Instruments Today, 2005, 144, 48.
[21] Chen, J. M.; Chen, C. K.; Chou, T. L.; Jarrige, I.; Ishii, H.; Lu, K. T.; Cai, Y. Q.; Liang, K. S.; Lee, J. M.; Huang, S. W.; Yang, T. J.; Shen, C. C.; Liu, R. S.; Lin, J. Y.; Jeng, H. T.; Kao, C. C. “Resonant X-Ray Emission Spectroscopy of Multiferroic TbMnO3” Appl. Phys. Lett. 2007, 91, 54108.
[29] Chen, J. M.; Chen, C. K.; Chou, T. L.; Jarrige, I.; Ishii, H.; Lu, K. T.; Cai, Y. Q.; Liang, K. S.; Lee, J. M.; Huang, S. W.; Yang, T. J.; Shen, C. C.; Liu, R. S.; Lin, J. Y.; Jeng, H. T.; Kao, C. C. “Resonant X-Ray Emission Spectroscopy of Multiferroic TbMnO3” Appl. Phys. Lett. 2007, 91, 54108.
[11] Chen, Y. B.; Kang, Y.; Qin, Y. Y.; Li, Z. J.; Cheng, J. K.; Hu, R. F.; Wen, Y. H.; Yao, Y. G. “Catena-poly[[dichlorozinc(II)]-micro-1,3-di-4-pyridylpropane kappa (2) N:N']” Acta Cryst. 2004, C60, m168.
[32] Yang, C. C.; Chung, M. K.; Li, W. H.; Chan, T. S.; Liu, R. S.; Lien, Y. H.; Huang, C. Y.; Chan, Y. Y.; Yao, Y. D.; Lynn, J. W. “Magnetic Instability and Oxygen Deficiency in Na-Doped TbMnO3” Phys. Rev. B 2006, 74, 94409.

延伸閱讀