透過您的圖書館登入
IP:18.189.180.76
  • 學位論文

多樓層鋼板剪力牆底層邊界柱構件耐震設計研究

A Study of Seismic Design of 1st Story Vertical Boundary Elements in Multi-Story Steel Plate Shear Walls.

指導教授 : 蔡克銓

摘要


鋼板剪力牆為一種具有高側向勁度以及韌性之新型抗側力系統,近年來於美 加等地區已漸受採用,但在國內工程應用上仍不多見,主要原因可能為:一、邊 界梁柱之容量設計要透過複雜的板條模型來完成,二、根據美國AISC 規範,邊 界柱塑鉸只允許產生於邊界柱柱底,柱尺寸設計過於保守且不經濟。典型低矮樓 層鋼板剪力牆柱內彎矩分佈為雙曲率之形式,中高樓層鋼板剪力牆之底層柱內彎 矩分佈無反曲點而呈單曲率之形式。為了針對多樓層鋼板剪力牆底層邊界柱發展 出簡便之容量設計方法,考慮邊界柱受到極大剪力以及彎矩同時作用下之效應, 本研究採用等效斜撐構架模型搭配簡化計算公式計算底層邊界柱之需求。本研究 考慮底層柱中塑鉸發生位置於0.3 倍柱高附近,但避免柱頂發生剪力降伏作為設 計準則,並且探討詳細設計方法。 為了簡化多樓層鋼板剪力牆有限元素模型分析所需之時間,與有效預測多樓 層鋼板剪力牆之底層柱之塑性行為,本研究建置鋼板剪力牆之子結構模型並探討 合理之邊界條件與施力方式,研究結果顯示子結構模型能有效模擬多樓層鋼板剪 力牆底層之塑性反應,與建置全結構模型相比可大量減少模型建置與分析時間。 為了驗證本研究所考慮之容量設計方法在預測底層邊界柱塑鉸位置的精確 度,並且研究鋼板剪力牆底層邊界柱柱頂產生塑性行為的效應,本研究採國家地 震工程研究中心之多軸向試驗機(MATS),以一座12 層鋼板剪力牆為原型結構, 兩座縮尺子構架試體之垮距為2.4 米,一樓高為2.0 米,二樓高為1.6 米,兩座 試體均使用2.65 公厘厚之低降伏強度鋼板,邊界梁設計相同尺寸而以一樓邊界 柱頂是否產生剪力降伏作為試體設計考量。完成雙層單垮鋼板剪力牆NC 及SC 之反覆側推試驗,並與ABAQUS 有限元素模型分析所得比較。 試驗與有限元素分析模型分析結果證實本研究所採用的容量設計方法,能相 當精確地預測底層邊界柱的彎矩塑鉸位置,符合本研究所提之容量設計之試體 NC,底層邊界柱彎矩塑鉸設計位置約為0.3 倍柱高處,邊界柱雖發生大範圍之降 伏但整體系統側推至頂層側位移角達5.0%弧度時仍有相當飽滿之受力與變形關 係;反觀未符合容量設計之試體SC 雖只比試體NC 整體用鋼量少5.7%,但整體 最大強度卻少了12%,且在頂層側位移角達2.5%弧度時柱頂即發生剪力降伏,反 覆側推至頂層側位移角達4.0%弧度後,底層邊界柱局部已發生嚴重扭轉挫屈以 及些許面外挫屈,整體結構雖未產生軟層現象,但工程應用上仍須避免。

並列摘要


Steel plate shear walls (SPSWs) have been recognized as a high lateral stiffness and ductility system for building structures. It has gained significant acceptance in the U.S and Canada in recent years. However, it has not been adopted in Taiwan for practical use so far. This could be due to the following two reasons: (1) the capacity design of boundary elements must be checked by using the strip model which may be complicated and time-consuming; (2) according to the AISC seismic provisions for structural steel buildings, the plastic hinge in the 1st story column is allowed to form only at the bottom end. Therefor the design of the 1st story column may be quite conservative and uneconomic. Unlike the low-rise SPSWs most past researches have investigated, large overturning moment-to-shear ratios may develop in the 1st story in a high rise SPSW. For the purpose of developing an effective capacity design methodology for the 1st story column in multi-story SPSWs, this study considers large shear and overturning moment exist in the 1st story column. Equivalent brace model is incorporated into a simplified design procedure to estimate the force demand in the 1st story column. Allowing the in-span plastic hinge to form approximately at the 0.3-height of the 1st story column, this study proposed the minimum requirements of a capacity design to prevent the shear and flexural yielding forming at the top of the 1st story column. In order to design the test specimen, pushover analyses on ABAQUS FEM models for a 12-story SPSW full system and substructure are conducted. Analytical results confirm that the overall and local inelastic responses of the lower two stories of the 12-story SPSW model can be accurately represented using a two-story substructure model. Significant analysis time can be saved by using proper boundary condition and applied loads. In order to verify the effectiveness of the proposed capacity design method, two 0.4-scale single-bay 2-story SPSW specimens were tested using the multi-axial testing system (MATS) in National Center for Research on Earthquake Engineering (NCREE). Each specimen is 2.4-meter wide, 2.0-meter and 1.6-meter high for the 1st and 2nd stories, respectively, representing the lower two stories of the 12-story prototype SPSWs. The 2.65mm-thick low yield strength steel plates and the same VI boundary beams are adopted for both specimens. The two specimens, NC and SC are designed to go into the inelastic range with or without the shear yielding forming at the top of 1st story column under cyclic increasing lateral displacements. The test and ABAQUS analytical results show that the proposed capacity design method could predict the in-span plastic flexural hinge location accurately. As predicted, the in-span plastic flexural hinge of specimen NC first developed near the 0.3-height of the 1st story column. Although the plastic zone are spread out widely along the 1st story column height, the force versus displacement relationships of specimen NC show that the system still have excellent load carrying capacity when the total drift reached 5.0% radians. Shear yielding at the top of 1st story column in specimen SC was observed when the total drift reached 2.5% radians. Soft story mechanism was never observed in either NC or SC when the story drift reached 5.0% radians. Although the total steel weight of NC is 5.7% more than SC, but the maximum lateral strength of NC is 12% greater than SC. However, specimen SC may not be desirable as severe local buckling and minor out-of-plane buckling occurred when the total drift reached 4.0% radians.

參考文獻


36.林志翰 (2005), 「實尺寸兩層樓鋼板剪力牆子結構擬動態試驗與分析」,國立
37.林盈成 (2004), 「低降伏強度鋼板剪力牆之耐震行為研究」,國立台灣大學土
35.朱駿魁 (2010), 「多樓層鋼板剪力牆結構耐震分析與設計之研究」,國立台灣
40.謝旺達 (2006), 「鋼板剪力牆之有限元素分析與設計研究」,國立台灣大學土
33.李弘祺、李昭賢與蔡克銓(2012),「鋼板剪力牆底層邊界柱耐震設計(一):容

被引用紀錄


金步遠(2017)。鋼板阻尼器構架耐震設計分析與擬動態試驗研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201701547
許仲翔(2016)。含鋼板阻尼器構架耐震設計與試驗及分析研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600796
洪唯竣(2016)。新建雙層含鋼板剪力牆之鋼筋混凝土構架耐震設計與實驗研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600466
黃彤(2015)。束制型與穿孔型鋼板剪力牆耐震設計研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01727
李宛竹(2015)。含鋼板剪力牆之新建鋼筋混凝土構架 耐震設計與反應分析研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01440

延伸閱讀