透過您的圖書館登入
IP:18.119.107.96
  • 學位論文

萘雙亞醯胺與芴衍生物於光催化二氧化碳還原反應

Photo-induced CO2 Reduction Catalyzed by Naphthalene Diimide and Fluorene Derivatives

指導教授 : 賴育英

摘要


過量的二氧化碳排放是當今全球暖化主要原因,因此發展再生能源是近年來最受矚目的研究領域。二氧化碳的光催化還原反應不僅可減少二氧化碳的排放量、妥善將太陽能以化學鍵方式貯存,還可將二氧化碳轉化為加值化產物,促進人類經濟活動的豐富度。其中有機高分子材料的組成元素在地球含量相對其他貴金屬觸媒更豐沛,因此用於光催化二氧化碳還原的研究近幾年開始受到重視。我們使用萘雙亞醯胺與芴兩類型的單體合成聚合物與小分子,討論高分子上不同官能基結構、予體受體交互作用、以及分子共軛長度對於光催化二氧化碳還原反應的影響。在不添加犧牲試劑與金屬元素的條件下,將各項材料進行光催化二氧化碳還原的異相催化。其中PF-Br展現最佳的一氧化碳產率8.422 μmol g-1 h-1,且擁有接近100%對氫氣與甲烷的選擇性。本研究亦透過理論計算,探討光催化二氧化碳還原可能的反應機制,期望能找出影響光催化效率的關鍵因素。

並列摘要


Excess emission of CO2 is considered the main reason for global warming; As a result, renewable energy has attracted much research attention in recent years. Photocatalytic CO2 reduction could potentially decrease CO2 concentration on earth. Moreover, the solar energy might be stored through transforming CO2 into other energy sources. Among all the photocatalysts used in CO2 reduction, organic polymers, which are mostly composed of abundant light elements, emerge as a highly promising material in recent years. In this study, we use naphthalene diimide and fluorene units to synthesize a variety of compounds, and discuss the relation among the photocatalytic efficiency, the physical properties, and chemical structures. Experiments of heterogeneous photocatalytic CO2 reduction with water were carried out, in the absent of sacrificial agents and metal cocatalysts. The results reveal that PF-Br showed the highest CO production rate of 8.422 μmol g-1 h-1 and the selectivity was close to 100%. Last but not least, the mechanisms with regard to the photocatalytic reduction of CO2 to CO are investigated by with DFT calculation, providing rationale for the experimental observation.

參考文獻


1. Osterloh, F. E., Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Letters 2017, 2 (2), 445-453.
2. Brunning, A.; Institute, A. G. C. Endangered Elements. https://www.acs.org/content/acs/en/greenchemistry/research-innovation/endangered-elements.html (accessed 2020/06/28).
3. Sakakura, T.; Choi, J.-C.; Yasuda, H., Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6), 2365-2387.
4. Tolman, W. B., Activation of small molecules: organometallic and bioinorganic perspectives. John Wiley Sons: 2006.
5. Wu, J.; Yang, X.; He, Z.; Mao, X.; Hatton, T. A.; Jamison, T. F., Continuous Flow Synthesis of Ketones from Carbon Dioxide and Organolithium or Grignard Reagents. Angewandte Chemie International Edition 2014, 53 (32), 8416-8420.

延伸閱讀