透過您的圖書館登入
IP:52.207.218.95
  • 學位論文

水稻幼苗於鹽害下根部及地上部光合作用數量性狀之基因座定位與分析

QTL mapping for root traits and shoot photosynthesis under salinity stress in rice seedling

指導教授 : 董致韡
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


水稻為世界上重要的糧食作物,而隨著環境的變遷及人口的急遽飆升,大量增加水稻的產量為重要的課題,為了使得水稻能種植於更多的區域以增加產量,提升水稻抗逆境的能力是有效的方法之一,鹽害為主要的非生物性逆境之一,水稻又屬於極度不耐鹽的作物,因此增加水稻的耐鹽能力有助於提升整體的產量。本研究中,我們使用東南亞地區的種原,觀察三種不同型態的根的表現。在全基因體關聯性分析(genome-wide association mapping, GWAS)中,共偵測到16個顯著的基因座與根長變化相關。其中兩個基因座與前人使用不同族群進行關聯性分析的結果相當接近。此外,我們使用葉綠素螢光來測量鹽害下葉片的光合作用利用效率,而從預備試驗的結果可以發現,鹽害下,水稻幼苗於第九天的實際光合作用利用效率 (effective PSII quantum yield, ΦPSII) 與第十一天的鹽害指數 (Injury score) 呈現中度相關 (r = -0.588),推測葉片的光合作用利用效率以及其修復系統的受損程度對於水稻的耐鹽性是重要的。在全基因體關聯性分析中,共偵測到32個與葉綠素螢光性狀相關的基因座。有兩個與耐鹽機制相關的基因 - OsNHX3 與 OsCBL4則座落於我們所定義的候選區域。最後,我們利用全球水稻種,同時分析水稻根部與地上部的性狀,發現此兩種性狀的表現是互相獨立的。然而我們也觀察到在根部及地上部皆表現優良的品種。我們期望這些品種能用於未來水稻育種並提升水稻的耐鹽性。

並列摘要


To increase the yield production, the crops may have to grow in the harsh environment. Salinity is one of the major abiotic stresses, and rice is very sensitive to increasing salts. In this study, we evaluated three different root types performance in South East Asia rice varieties, total sixteen loci were detected using genome-wide association mapping (GWAS), and two were found in previous study. In addition, chlorophyll fluorescence was used to measure the leaf photosynthesis rate under salt stress. The pilot experiment showed the effective PSII quantum yield (ΦPSII) on day 9 and Injury score (IS) on day 11 was moderately correlated (r = -0.588), suggesting the damage level of leaf photosynthesis rate and its repairing mechanism may be crucial for salinity tolerance in rice. Total 32 significant loci were detected by GWAS in five chlorophyll fluorescence related traits. Among these loci, two genes OsNHX3 and OsCBL4 related to salinity tolerance mechanisms were detected in the candidate regions. Finally, we analyzed root and shoot traits in diverse accessions and found that performance of shoot and root is independent under salt stress We expect these varieties could be used to improve salt tolerance through QTLs pyramiding approach in rice breeding program.

參考文獻


林士弘 (2014). 水稻幼苗在鹽逆境之根部數量性狀基因座定位分析, 臺灣大學.
Sabouri, H. and A. Sabouri (2008). New evidence of QTLs attributed to salinity tolerance in rice. African Journal of Biotechnology 7(24): 4376-4383.
Kumar, V., A. Singh, S. V. Mithra, S. L. Krishnamurthy, S. K. Parida, S. Jain, K. K. Tiwari, P. Kumar, A. R. Rao, S. K. Sharma, J. P. Khurana, N. K. Singh and T. Mohapatra (2015). Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2): 133-145.
Abdelkader, A. F., S. El-khawas, N. A. S. E.-D. El-Sherif, R. A. Hassanein, M. A. Emam and R. E.-S. Hassan (2012). Expression of aquaporin gene (OsPIP1-3) in salt-stressed rice (Oryza sativa L.) plants pre-treated with the neurotransmitter (dopamine). Plant Omics 5(6): 532-541.
Ahmadi, J. and M.-H. Fotokian (2011). Identification and mapping of quantitative trait loci associated with salinity tolerance in rice (Oryza sativa) using SSR markers. Iran. J. Biotechnol. 9(1): 21-30.

延伸閱讀