透過您的圖書館登入
IP:3.133.109.30
  • 學位論文

含五苯荑骨架之聚苯胺合成與作為超電容電極材料之研究

Synthesis of Pentiptycene-incorporated Polyanilines for Application as the Electrode Materials of Supercapacitors

指導教授 : 楊吉水

摘要


本論文旨要引入剛硬的五苯荑骨架於聚苯胺的高分子鏈中,以提升聚苯胺高分子整體的剛性和應力穩定性,來增加其作為超電容器電極材料的穩定度。同時,具有三維立體結構的五苯荑骨架,能擴薄膜的表面積,使材料能儲存更多的電荷。因此,我們設計並合成出具有胺基的五苯荑衍生物APAN和TAP以電化學氧化聚合的方式與苯胺單體於ITO工作電極表面進行共聚合反應,分別得到PPANI及SPPANI兩種共聚合導電高分子作為超電容器電極材料,並與聚苯胺 (PANI)進行比較。此外,我們也將PCBM加入溶液中進行共聚合形成PPANI-PCBM和SPPANI-PCBM參雜薄膜,藉著兩種分子間的堆疊和排列,來使超電容器達到更好的表現。 我們利用循環伏安法 (CV)、恆電流充放電法 (CP)及電化學阻抗光譜 (EIS)對電化學聚合的導電高分子ITO電極進行電化學分析,發現SPPANI及PPANI相較於PANI具有較高的單位電容、較佳的循環穩定度,和具有較低系統內電阻,能有效地降低高分子的電阻和減少離子進出的阻力。藉由掃描式電子顯微鏡 (SEM)和穿透式電子顯微鏡 (TEM),我們觀察到SPPANI和PPANI具有不同於PANI奈米結構,亦即PANI呈現的纖維狀鬆散的結構,而SPPANI和PPANI呈現縝密的顆粒狀結構,其中SPPANI具有近乎圓球狀的結構。在PCBM的存在下,SEM影像觀察PPANI-PCBM具有較大的顆粒狀,而SPPANI-PCBM沒有太大的形貌改變。在電化學性質上,PPANI-PCBM的單位電容、能量密度和循環穩定度也較PPANI明顯提升,因此推論PCBM與APAN分子具有良好超分子作用力,有助於超電容器電極性能的提升。

並列摘要


Supercapacitors have evolved as the premier choice for energy storage devices because of high power density and fast charge/discharge ability. To achieve high charge capacitance, the nature of the electrodes should be of high conductivity, surface area, and electrochemical stability. Conducting polymers such as polyaniline (PANI) have the advantages of low cost and low environmental impacts. However, the electrochemical stability is generally a limitation of conducting polymers. To solve the problem, we have introduced the rigid and nonplanar pentiptycene scaffolds to PANI to improve the electrochemical stability and meanwhile to enhance the capacitance. Two pentiptycene derivatives APAN and TAP were prepared and electrocheical copolymerization of them with aniline on ITO led to the linear PPANI and star-shaped SPPANI, respectively. In the presence of PCBM during the polymerization, the polymer films correspond to SPPANI-PCBM and PPANI-PCBM, respectively. According to cyclic voltammetry, chronopotentiometry and electrochemical impendance spectroscopy, PPANI and SPPANI display higher specific capacitance, energy density, stability and lower electrical and ionic resistance than PANI. Unlike the fibrillar and loose morphology probed by TEM and SEM for PANI, PPANI and SPPANI display granular-like and compact morphology. When PCBM is present in the solution for electrochemical polymerization, the SEM images of PPANI-PCBM show larger size of particles. In contrast, the morphology of SPPANI-PCBM is not much different from that of SPPANI. Since PPANI-PCBM displays improved specific capacitance, energy density, and stability, it appears that the supermolecular interactions between APAN and PCBM play an important role in the improved supercapacitor properties.

參考文獻


1. International Energy Agency / SOT, S. P. G. L.-B.-S. G., Total Global Primary Energy Supply in Mtoe. 2010.
2. Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V., Overview of Current and Future Energy Storage Technologies for Electric Power Applications. Renew. Sustainable Energy Rev. 2009, 13, 1513-1522.
3. Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845-854.
6. Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
7. Pieta, P.; Obraztsov, I.; D'Souza, F.; Kutner, W., Composites of Conducting Polymers and Various Carbon Nanostructures for Electrochemical Supercapacitors. ECS J. Solid State Sci. Technol. 2013, 2, M3120-M3134.

延伸閱讀