透過您的圖書館登入
IP:3.135.198.49
  • 學位論文

有機無機混合型太陽能電池與全背電極砷化鎵太陽能電池的二維模擬與優化

Optimization of the PEDOT:PSS/SiNW Hybrid Solar Cells and All-Back-Contact GaAs Solar Cells with Two Dimensional Simulation

指導教授 : 吳育任

摘要


本論文研究了兩種不同的太陽能電池,其一是PEDOT:PSS矽奈米線混合型太陽能電池,另一個則是全背電極砷化鎵太陽能電池,對於這兩種太陽能電池,我們依據其結構特性選擇了不同的模擬方法,在分析完其電性的表現後,我們針對兩種太陽能電池皆提出了優化的結構設計。 對於模擬PEDOT:PSS矽奈米線混合型太陽能電池,我們建構了一個可以模擬有機無機混合型太陽能電池的數值模型,並引入了高斯分布的尾態/介面態與高斯分布的陷阱來展現有機材料這方面的特性,而光場則是由二維有限差分時域法來計算。透過實驗量測的電流-電壓曲線來驗證模擬參數後,再針對PEDOT:PSS矽奈米線混合型太陽能電池做優化。目前優化後最佳的結構設計為增加p-type矽於鄰接PEDOT:PSS的奈米線區域,並在接近背電極再增加n-type矽,最高效率可望達到16.12%. 對於砷化鎵太陽能電池,我們採用全背電極的設計,並模擬了不同基極層厚度與n電極的寬度,藉由全背電極砷化鎵太陽能電池的電性表現來找出最佳化的設計。較厚的基極層可以吸收較多的太陽能,能有較高的吸收電流,但同時也造成較高的復合電流,所以基層厚度建議為1.5微米;較寬的n電極可以有較高的短路電流,但在施加偏壓時會在p-n接面造成較高的復合電流,導致填充因子的表現下降,因此n電極的寬度建議為600微米。根據以上建議的設計結構,模擬出的最佳效率可望達到25.12%。

並列摘要


The poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire (SiNW) hybrid solar cell and the all-back-contact gallium arsenide (GaAs) solar cell are studied in this thesis. We used different simulation methods based on the characteristic of each solar cell to obtain the optical and electrical properties of each solar cell. After analyzing the electrical properties of the PEDOT:PSS/SiNW hybrid solar cell and the all-back-contact GaAs solar cell, further optimization is proposed, respectively. For the PEDOT:PSS/SiNW hybrid solar cell, a numerical model that capable of simulating the organic/inorganic hybrid solar cells was developed. Furthermore, a Gaussian distribution models of tail/interfacial states and trap states are addressed to present this characteristic when simulating the organic/inorganic hybrid solar cells. The 2D-FDTD model was used to model the optical field. After the simulation parameters are verified by fitting the current density-voltage (J-V) curve to the experimental results, the PEDOT:PSS/SiNW hybrid solar cell is optimized. The optimal structure is proposed with a p-type doping Si layer in the SiNW region adjoining to the PEDOT:PSS and an n-type doping Si layer at the rear Si layer near the bottom contact. The highest efficiency of 16.12% could be obtained after the optimization. For the GaAs solar cell, an all-back-contact is employed to the GaAs solar cell. By investigating the electrical properties of the all-back-contact GaAs solar cell, we are able to find the optimum structural design. A thicker base layer can reach a higher generation current, but it can also lead to a higher recombination. Therefore, the base layer thickness is suggested to be 1.5 um. For a wider n-contact width, a higher Jsc can be obtained, but the recombination at the p-n junction region becomes larger, which deteriorates the FF. Consequently, the n-contact width is recommended to be 600 um. The best efficiency up to 25.12% could be achieved with the suggested structure.

參考文獻


[1] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices. Prentice Hall, 2001.
[58] N. Reich, W. Van Sark, E. Alsema, S. Kan, S. Silvester, A. Van der Heide, R. Lof, and R. Schropp, “Weak light performance and spectral response of different solar cell types,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference, pp. 2120–2123, 2005.
[2] A. Nardes, M. Kemerink, M. de Kok, E. Vinken, K. Maturova, and R. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Organic Electronics, vol. 9, no. 5, pp. 727 – 734, 2008.
[3] T. Koyama, T. Matsuno, Y. Yokoyama, and H. Kishida, “Photoluminescence of poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in the visible region,” Journal of Materials Chemistry C, vol. 3, no. 32, pp. 8307–8310, 2015.
[6] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,”Applied Physics Letters, vol. 28, no. 11, pp. 671–673, 1976.

延伸閱讀