透過您的圖書館登入
IP:54.81.157.133
  • 學位論文

線上雙狹縫彩色差動共焦量測探頭之研發

Development of In-situ Double-slit Chromatic Differential Confocal Probe

指導教授 : 陳亮嘉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究之目的為發展雙狹縫彩色差動共焦技術與量測探頭之開發與測試。共焦量測技術現行的發展大多以線上即時量測作為研究方向與目標,其中一項關鍵的量測方式為彩色共焦量測技術,此技術用軸向色散原理來取代傳統共焦量測技術的垂直掃描過程,可有效提升量測速度,但也因演算法是建立於色散原理架構下造成了量測時會受到待測物體反射率影響,另外須以光譜儀作為感測器也使得量測速度及架構受到了限制;另一項關鍵量測技術是差動共焦量測術,差動架構及其演算原理使得量測也不須垂直掃描,但其缺點在於及時深度量測範圍太小,使得量測應用性受限。因此,本研究結合彩色共焦技術與差動共焦技術之優點,發展一雙狹縫彩色差動共焦量測技術與量測探頭,此研究為接續先前實驗室學長之設計概念,進一步實現線上量測探頭的開發與測試。量測系統以寬頻之白光搭配線光纖作為線型光源,結合自行設計之軸向色散物鏡達成彩色共焦量測術架構。反射光訊號經過分光鏡一分為二,並於兩個彩色線型光感測器前通過一組不同寬度大小之狹縫進行空間濾波,因此兩感測器得到一組不同全寬半高值之反射光訊號,藉此以差動演算法求出強度比值對深度關係曲線,產生一即時深度量測範圍,進行待測物之三維形貌量測與重建。目前探頭即時深度量測範圍可達150 μm,量測之設計線長為14 mm。經由實驗結果之驗證,量測鏡面之待測物時單條取像時間可小於1 ms,標準階高塊量測結果之一個標準差為0.12 μm。惟因光場強度均勻性有待提升,目前可實測之線寬範圍仍未達設計值,此可由進一步改善聚光鏡組,獲得有效解決。總結來說,研發之雙狹縫彩色差動共焦量測技術改善舊有技術問題,可大幅提升即時量測範圍、光源使用效率以及量測速度等,以利增進其工業量測上運用價值及可行性。

並列摘要


This study develops a broadband differential confocal surface probe (profilometer) using novel double-slit chromatic confocal measuring principle for in-situ microscopic surface inspection. In-situ automatic optical inspection (AOI) on microstructures has become extremely important to ensure manufacturing quality in modern manufacturing fields. A multi-wavelength differential confocal surface profilometer is developed and tested by employment of an innovative double-slit conjugate configuration for generating the differential gradient in confocal measurement. This study aims to realize the conceptual design work carried previously by Mr. Jun-Da Lin at NTU AOI Lab into a probe prototype with improved measuring efficiency and accuracy. Two different sizes of slits are placed in front of their corresponding imaging unit and designed to conjugate with an object surface underlying inspection, generating the differential gradient by correlating two focus-depth-response curves. The developed system can achieve one shot inspection for line-scan profilometry without vertical scanning frequently required by conventional confocal measurement. Again, the scanning rate is greatly enhanced by more than 10 times from the achievable frame rate of a spectrometer to the one by a high speed line CCD. From the experimental test and analyses, it is verified that the vertical measurement range can be designed for a few hundreds of micrometers while its vertical measuring repeatability is less than 0.15 micrometers in one standard deviation. The measuring speed can match tight tact time requirements in in-situ AOI.

參考文獻


[1] 張奕威, “多波長差動共焦顯微三維形貌量測技術之研究.” 博士論文. 國立臺北科技大學機電科技研究所. 2012
[2] 林俊達, “創新式雙狹縫彩色差動共焦高速形貌量測術之研發.” 碩士論文. 國立台北科技大學自動化科技研究所. 2013.
[3] M. Minsky, “Microscopy Apparatus,” U.S. patent, No. 3,013,467, 1961.
[4] T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks, ”Applied Optics, Vol. 41, Issue 22, pp. 4704-4708, 2002.
[5] M. Ishihara and H. Sasaki, “High-speed surface measurement using a nonscanning multiple-beam confocal microscope,” Optical Engineering, Vol. 38, Issue 6, pp. 1035-1040, 1999.

延伸閱讀