透過您的圖書館登入
IP:3.218.247.159
  • 學位論文

毫米波及次毫米波電波天文混頻器研製與接收機測試

Mixer Development and Receiver Measurement for Millimeter- and Submillimeter-Wave Astronomy

指導教授 : 瞿大雄

摘要


本論文內容主要為敘述毫米波次調諧混頻器研製,及毫米波與次毫米波天文望遠鏡之接收機系統測試。次調諧混頻器研製包含混頻器單晶毫米波積體電路及電路封裝,接收機系統測試則包含宇宙背景輻射陣列望遠鏡(AMiBA) 接收機及次毫米陣列望遠鏡(SMA) 接收機。 本論文敘述之W-頻段次調諧混頻器單晶毫米波積體電路,包含二極體混頻器,及高電子動率電晶體(HEMT)閘極混頻器。二極體混頻器係使用美國TRW公司製程,HEMT閘極混頻器則使用穩懋半導體公司製程。研製結果顯示,包含電路封裝模組,原型二極體混頻器有36GHz頻寬,於48GHz本地振盪信號,射頻頻率共為78-114GHz,雙旁波段中頻頻率為0.5-18GHz。次調諧二極體混頻器之寬頻設計經改善,可達到1-20GHz中頻頻率,轉換損失之變化量則維持在±1.5 dB。HEMT閘極混頻器之設計,則使用Curtice電晶體模型之廣義形式,建立電路轉換增益理論,電晶體之模型參數則用於模擬轉換增益。次調諧混頻器電路設計係使用Agilent/EEsof軟體之諧波平衡法進行模擬,轉換增益量測值與模擬值均相當吻合。 研製之次調諧二極體混頻器,安裝於AMiBA W-頻段之差頻式寬頻接收機,該接收機具有20GHz之中頻瞬時頻寬,用於觀測極微弱之宇宙背景輻射。由於接收機中頻信號係以類比式相關計算進行分析,接收機雜訊溫度及轉換增益對頻率之變化量,需儘可能降低。依據原型機之測試結果,經進一步系統設計修改,第一組量產型接收機,在轉換增益平坦度及雜訊溫度均有顯著改善。 最後,論文並敘述兩組600-696GHz差頻式接收機之整合測試。整合測試中最關鍵之項目係使用向量場型量測接收機之光學系統。此一量測基本上是於次毫米波頻段,進行向量網路分析。透過頻率合成及轉換關係式,本論文建立一套簡化而可靠的向量網路分析裝置,用於690GHz之場型量測。接收機光學裝置經場型量測及校正後,進一步進行接收機中頻頻寬、雜訊溫度及雜訊來源分析量測。兩組差頻式接收機目前已安裝於次毫米波陣列望遠鏡,進行天文觀測。 電波天文望遠鏡之接收機是一個極為龐大之系統,所牽涉之專業知識,不僅涵蓋電波工程及電機電子工程,舉凡超導材料、低溫真空及精密機械加工設計等,均須涉獵。因此相較於建造電波天文望遠鏡所須的眾多研究課題,本論文所討論之題材只為其中之一二。除了毫米波及次毫米波天文儀器研發應用之外,論文研製之混頻器,可應用於W-頻段通訊系統,而研製之690GHz向量網路分析裝置,則可應用於1THz以下之天線及電路特性量測。

並列摘要


In this dissertation, design and development of millimeter-wave subharmonically pumped (SHP) mixers, millimeter-wave and submillimeter-wave heterodyne receiver systems for radio-astronomical astronomy are presented. The mixer development includes the monolithic millimeter-wave integrated circuits (MMIC) and the packaged modules. The heterodyne receiver measurements includes AMiBA (Array of Microwave Background Anisotropy) receiver and SMA (Submillimeter Array) receiver. The W-band SHP MMIC mixers described in this dissertation are diode mixers and HEMT gate mixer. The SHP diode mixers are fabricated by TRW Inc., and the SHP HEMT gate mixer is fabricated by WIN Semiconductor Corp. For packaged modules, the SHP diode mixer prototype shows 36-GHz bandwidth covering 78-114GHz RF frequency and 0.5-18GHz double sideband IF frequency under 48 GHz LO pumping signal. The broadband design approach for SHP diode mixer is discussed and implemented. The improved SHP diode mixers show 1-20GHz IF frequency with only ±1.5 dB conversion fluctuation. For HEMT gate mixer, extended Curtice model is applied to formulate the conversion gain. The device parameters are extracted to calculate the predicted conversion gain. The circuit is simulated using the HP/EEsof harmonic balance analysis. The measured results of maximum conversion gain agree with the simulation results. The wideband heterodyne receiver for W-band AMiBA is developed using the developed SHP diode mixers. This receiver requires a 20 GHz IF instantaneous bandwidth for extremely faint cosmic microwave background radiation detection. In order to use the analog correlation for the received signal processing, the noise temperature and receiver conversion gain fluctuation over the operation bandwidth should be minimized. The system design is revised after the measurement of prototype receivers. The first set of the production receiver shows an improvement on the receiver conversion gain flatness and receiver noise temperature. Integration and testing of two sets of 600-696GHz heterodyne receivers are also described in this dissertation. One of the critical testing is to measure the receiver vector beam pattern for optics alignment verification. This measurement is basically to perform vector network analysis in the submillimeter wave range. Based on a new frequency synthesis and conversion formulation, an effective and stable vector network analysis configuration is developed for 690GHz beam pattern measurement. With the beam pattern measurement the receiver optics are characterized. The calibrated receiver is then further conducted for the measurement of IF frequency coverage, receiver noise temperature and the noise contribution analysis. These two receivers are now installed into the SMA telescopes for astronomy observation. In general, the development on the devices and receiver systems for radio astronomical telescopes is a complicated engineering work. It needs a well-organized team with well-disciplined engineers in different fields, e.g. electromagnetic waves, electronics, superconductivity, cryogenics, vacuum technology, and precision machining. Compared to all the knowledge required for the radio telescope, the techniques described in this dissertation is only a small portion. In addition using in the millimeter and submillimeter wave astronomy instrumentation, the developed SHP mixer can find applications in W-band communication system and the developed 690 GHz vector network analysis configuration is capable in the antenna or circuit characterization with frequency up to 1THz.

參考文獻


[61] M.T. Chen, S.H. Chang, C.C. Chin, T.-H. Chu, Shu-I. Hu, M.S. Hwang, Y.-J. Hwang, K.Y. Lo, R.N. Martin, P. Martin-Cocher, S.S Shen, S.C. Yang and M. J. Wang, "A progress report on the Submillimeter Array in Taiwan: the receiver system," Proc. of SPIE Int. Soc. Opt. Eng., vol. 4015, pp. 247-252, Aug. 2000.
[88] A. M. Baryshev, H. van de Stadt, H. Schaeffer, R. Hesper, T. Zijlstra, M. Zuiddam, W. Wild, and L. de Jong, “Development of a 0.6 THz SIS receiver for ALMA,” Proc. of Tweleveth Int. Symp. Space Terahertz Tech., pp. 581-590, Feb. 2001.
[24] Y.-J. Hwang, M.-T. Chen, Huei Wang, R. G. Gough, and M. W. Sinclair, “W-band GaAs HEMT MMIC subharmonically pumped diode mixers for Array of Microwave Background Anisotropy (AMiBA) receivers,” Proc. of XXVII URSI General Assembly, Aug. 2002.
[51] C.-T. Li, D. Kubo, C. –C. Han, C. –C. Chen, M. –T. Chen, C. –H. Lien, H. Wang, R. –M. Wei, C. –H. Yang, T. –Z. chieh, “A wideband analog correlator system for AMiBA,” Proc. of SPIE Int. Soc. Opt. Eng., vol. 5498, pp. 455-461, Oct. 2004.
[36] M.T. Chen, Y.-J. Hwang, T.-H. Chu, S.C. Lu, K.Y. Lo, R.N. Martin, Huei Wang, M. Kesteven, M. Sinclair, W. Wilson, J. Payne, and J. Peterson, "Receiver for AMiBA: prototype concepts," The 2001 Asia-Pacific Radio Science Conf., Tokyo, Aug. 2001.

延伸閱讀