透過您的圖書館登入
IP:13.58.252.8
  • 學位論文

頻譜解析三倍頻顯微術

Spectrally-resolved Third Harmonic Generation Microscopy

指導教授 : 孫啟光

摘要


藉由優化雷射共振腔內的配置,吾人將鉻貴橄欖石鎖模雷射的頻寬從三十三奈米展寬至八十奈米。利用中心波長一千兩百六十三奈米、波長頻寬八十奈米、脈衝寬度四十八飛秒的鉻貴橄欖石鎖模雷射作為激發源,吾人首先建立起一套三倍頻頻譜系統以進行分子特性分析。本系統能夠過單束的寬頻超快鎖模雷射取得水、脂肪、黑色素、血紅素等人體皮膚內常見分子的寬頻三倍頻頻譜並分析其對應的非線性極化率。 結合三倍頻頻譜分析及三倍頻顯微術,吾人成功建立起一套頻譜解析三倍頻顯微系統,能提供七秒幀率、一零二四像素見方、三通道偽色三倍頻影像。透過將寬頻的三倍頻訊號依據波段劃分為三通道並以偽色套色,不同的分子頻率響應可以被吾人以不同的偽色調來呈現。本系統的頻譜解析三倍頻影像成功的在提供次微米等級的組織型態外,提供視覺化的生物組織內分子的頻率響應。黑色素瘤細胞、孵化斑馬魚、脂肪組織、紅血球、表皮組織、基底細胞癌、真皮層微血管等作為頻譜解析三倍頻顯微系統的離體及活體生物樣品,都展示了本系統視覺化分子頻率響應的成果。

並列摘要


I broadened the bandwidth of Cr:forsterite solid laser from 33nm to more than 80nm by optimizing the incorrect oscillator statement. Using the 80nm-broadband Cr:forsterite solid laser with a central wavelength around 1263nm and 48fs pulse width as excitation source, I first set up a third harmonic generation (THG) spectroscopy system for molecular analysis. This spectroscopy system was able to measure the THG spectra and analyze the corresponding nonlinear susceptibilities of the molecules commonly found within human skins, i.e. water, lipid, melanin, and hemoglobin by using one broadband ultrafast laser beam. Combining THG spectroscopy with THG microscopy, I then set up the spectrally-resolved THG microscope system, which could record 3-color THG images with 1024x1024 pixels 7 frames per second in real time. The broadband third harmonic signals were divided into 3 channels based on different wavelength sections to present the molecular spectral responses in different pseudo hues. By the spectrally-resolved THG images, it was able to provide detailed morphology with a submicron lateral resolution and visual molecular information of bio-tissues. Melanoma cells, zebrafishs, adipose tissues, erythrocytes, epidermal tissues, basal cell carcinoma, and dermal capillaries were as specimens ex vivo and in vivo to exhibit the sensitivity about molecular information of the spectrally-resolved THG microscope system.

參考文獻


[1] S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Optics Express 14, 6178 (2006).
[2] S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE Journal of Selected Topics in Quantum Electronics 16, 478 (2010).
[3] M.-R. Tsai, S.-Y. Chen, D.-B. Shieh, P.-J. Lou, and C.-K. Sun, “In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,” Biomedical Optics Express 2, 2317 (2011).
[4] M. Rajadhyaksha, S. González, J.M. Zavislan, R.R. Anderson, and R.H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” Journal of Investigative Dermatology 113, 293 (1999).
[5] B. Masters, P. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophysical Journal 72, 2405 (1997).

延伸閱讀


國際替代計量