透過您的圖書館登入
IP:18.219.236.62
  • 學位論文

三苯胺衍生物之電化學、光譜電化學之性質研究及其對化學發光之影響

The Electrochemical and Spectral Characteristics of N, N’-di-p-Anisylamino-Substitued Phenyl Derivatives and Their Effects on Chemiluminescence

指導教授 : 林萬寅

摘要


透過電化學、光譜電化學及理論計算,對所合成的三苯胺衍生物進行研究,期望了解取代基效應對氧化電位、光譜性質、動力學及活化能等物化性質所造成的影響。當取代基提供電子能力越強,氧化反應所需的電位越低。在光譜電化學的研究中,這些化合物在中性態吸收峰及正一價陽離子自由基的最大吸收峰,均為紅位移。但是在二價陽離子的光譜位置上,則沒有明顯的變化。將化合物1至6的中性態及正一價陽離子自由基的最大吸收峰的波數對Hammet常數做圖,均可以得到線性關係。 在動力學的實驗裡,我們研究化合物1及化合物6以正一價陽離子自由基的特性峰之消長為計算第一階段(k1及k2)及第二階段氧化過程反應速率常數(k-1及k-2)的依據。從log k對Eappl..作圖發現,化合物1的第一階段氧化較快;但第二階段的氧化反應則為化合物6較快。 透過理論計算了解三苯胺在氧化過程中電子轉移情形及分子結構變化,我們發現無論是化合物1或6,在中性態時,中心氮原子及接在苯環上的甲氧基的密度最大。對化合物1而言,從中性態至正一價陽離子自由基的過程中,氮及甲氧基團的電子密度減少,苯環上的密度卻增加,透過苯環的共振,氧化過程中,甲氧基團會傳遞電子至苯環上。從1˙+至12+的過程,氮原子幾乎沒有失去電子,電子則由苯環及三個甲氧基團提供。從化合物結構來看,隨著氧化的進行,雙面角角度越來越小,表示共平面的情形持續增加,分子共振越明顯。 化合物6由中性態至正一價陽離子自由基的過程中,電子轉移如同化合物1一般,反而是接上硝基的苯環,則因具有強去活化的傾向,使得電子往nitro-phenyl基團方向移動。而化合物6的C-N-nitrophenyl在氧化的過程中,其鍵長增加,雙面角角度也增大。Nitrophenyl基和NCCC的共平面變差了,且隨著氧化持續發生,和C-N-anisyl的結構差異越來越大。 我們將化合物1-6應用於光化學的研究中。我們發現因KIO4-Mn2+-Luminol 系統中,存有氧化劑,可以氧化化合物1、2、6,形成陽離子自由基。因此,化合物1-6會和系統競爭KIO4,造成第一根峰的下降,所產生的自由基,又和系統中活氧物質,如•OH、O2-等作用,使得第二根峰強度增強,而此變化又以化合物1最為明顯。 加入自由基抑制劑1,4-diazabicyclo﹝2, 2, 2﹞octane (1,4-DO),會抑制第一根峰、增強第二根峰的放光;在同樣的條件下再加入化合物1,則抑制第一根峰,而第二根峰也抑制。所以,1,4-DO抑制了化合物1的陽離子自由基,使得和活氧物質作用減少,因此,沒有增強第二根峰的放光;加入化合物2、6對放光系統沒有產生的變化。 將化合物1-6應用於檢測dopamine、(+)-epinephrine、catechol及其異構物以及flavones等多酚類物質。大多數物質會抑制兩根訊號的放光強度,這是因為多酚類物質扮演自由基消除劑的角色,它們和三苯胺陽離子自由基反應,影響化合物1-6增強第二根訊號的效應。值得住意的是,實驗中(+)-epinephrine 及7,8-flavone與其它多酚類展現截然不同的效應,部分實驗條件下,兩者皆對第二根訊號有加強的作用,推測可能的原因為兩者結構接有能與金屬形成錯合物的螯合位置,能形成更有效率的催化錯合物增強第二根發光強度。

並列摘要


We have investigated the electrochemical, spectral, and kinetic properties of the synthesized triarylamines and their cation radicals and dications. The UV/Vis spectral changes for the formation of cation radicals and dication species of these compounds were successfully observed by repeated scan of the absorption spectra at fixed voltages below their half-wave potentials. The spectral changes for the regeneration of the cation radical and then the neutral species could be observed by resetting the voltage to 0.0 V (vs. Ag/AgCl) after the dicationic species was formed. These observations allowed us to investigate the kinetics of the whole redox processes for some triarylamines. We also found that the rates for the formation of radical cations and dicationic species of these compounds increased exponentially with increasing applied voltages. The kinetic data indicate that the rate constants (k) for the conversion are strongly dependent on the individual step, the applied potential, and the identity of the substituents. Moreover, linear Hammet plots were observed for the half-wave potentials of first redox couples and the absorption maxima (both neutral and cationic species) against the substituent constant (3)Theoretical calculations have revealed that the removal of the first and second electrons from these compounds comes mostly from the nitrogen atom and the phenyl rings, respectively. Dual chemiluminescence (CL) from the KIO4-luminol-Mn2+ system was originated from different CL pathways participated by various reactive oxygen species (ROS) such as O2-, •OH, and 1O2. It is interesting to examine how the cation radicals generated from derivatives of triarylamine affect the dual CL emission. In the presence of a strong oxidant KIO4 and a catalyst Mn2+, the formation of radical cations of triarylamines inhibited the first peak, but further enhanced the second peak. The resulting CL emission was used to determine the phenolic compounds such as dopamine, (+)-enpinephrine and flavones. These compounds are capable of reacting with ROS and radicals efficiently.

參考文獻


(2) Chiu, K. Y.; Su, T. H.; Huang, C. W.; Liou, G. S.; Cheng, S. H. J Electroanal Chem 2005, 578, 283.
(65) Chiu, K. Y.; Su, T. X.; Li, J. H.; Lin, T. H.; Liou, G. S.; Cheng, S. H. J Electroanal Chem 2005, 575, 95.
(23) M. K. Leung, M. Y. C., Y. O. Su, C. L. Chiang, H. L. Chen, C. F. Yang, C. C. Yang, C. C. Lin, H. T Chen, Org. Lett 2003, 5.
(11) S. A. VanSlyke, C. H. C., C. W. Tang Appl. Phys. Lett 1996, 69.
(28) R. Reynold, L. L. L., R. F. Nelson J. Am. Chem. Soc 1972, 96.

延伸閱讀