透過您的圖書館登入
IP:52.14.126.74
  • 學位論文

符合ISO 26262內涵之主動式平衡電池管理系統可靠度分析

Reliability Analysis of Active-Balance Battery Management System for Fulfillment of ISO 26262

指導教授 : 吳文方

摘要


車輛安全一直是業界重視的議題,而車用電機/電子產品與其相關零組件的安全更是備受重視。為避免車輛因潛在危害引起安全問題,國際標準組織(International Organization for Standardization, ISO)針對車用電機/電子產品發佈ISO 26262標準,歐洲各國將來可能要求輸入他們國家的車用電機/電子產品符合該標準。在ISO 26262的內涵下,本研究以一具主動式平衡(Active Balance)之電動車用電池管理系統(Battery Management System, BMS)為主題,示範一套符合ISO 26262標準的可靠度分析流程;而本研究特別探討並比較開關電容電池平衡 (Switched Capacitor Cell Balancing, SC)架構、雙層開關電容電池平衡 (Double-Tiered Switched Capacitor Cell Balancing, DTSC)架構、單開關電容電池平衡 (Single Switched Capacitor Cell Balancing, SSC)架構三種主動式電池平衡架構,考慮時間相關電介質擊穿(Time Dependent Dielectric Breakdown, TDDB)、負偏壓溫度不穩定性(Negative Bias Temperature Instability, NBTI)、電遷移(Electromigration, EM)、熱載子注入(Hot Carrier Injection, HCI)四種電晶體失效模型,並依據其失效機制評估主動式電池平衡架構之可靠度。研究結果發現,使用SSC電池平衡架構管理系統之失效率僅為採用其他兩個架構系統之一半,而影響電晶體失效率最為嚴重之失效機制為TDDB。以ISO 26262所注重的汽車安全完整性等級(Automotive Safety Integrity Level, ASIL)而言,本研究發現所採用三種主動式電池平衡架構之電池管理系統皆符合ASIL B。

並列摘要


Vehicle safety is a critical issue in the automotive industry. The safety of automotive electrical/electronic products and their components are emphasized in particular in recent years. To avoid hazards caused by failures of electrical/electronic systems and/or components installed in vehicles, the International Organization for Standardization published the first edition of ISO 26262 in 2011 and has made a few revisions afterwards. ISO 26262 is a functional safety standard emphasizing “Road Vehicles-Functional Safety.” To demonstrate how ISO 26262 can be fulfilled, a battery management system (BMS) with active cell balancing to be used in an electric vehicle is studied from reliability point of view in this thesis. The active cell balancing unit may apply switched capacitor (SC), double-tiered switched capacitor (DTSC) or single switched capacitor (SSC) to equalize the battery pack. The reliabilities of the above three cell balancing techniques are studied and compared in this thesis. In particular, failure rates of the three cell balancing techniques are evaluated by taking microelectronic failure modes of time dependent dielectric breakdown (TDDB), negative bias temperature instability (NBTI), electromigration (EM) and hot carrier injection (HCI) into consideration. The result indicates the failure rate by employing SSC cell balancing technique is about half of those by employing other two techniques, and the most severe failure mechanism among all is TDDB. The result also indicates that all three cell balancing techniques employed in the studied BMS fulfill the reliability requirement of ASIL B in ISO 26262.

參考文獻


[19] 黃伊辰,符合ISO 26262車用電池管理系統之可靠度評估,臺灣大學機械工程學研究所碩士論文,臺灣臺北,2015。
[20] 鄭星山,馬達驅動控制器之量化可靠度研究,臺灣大學機械工程學研究所碩士論文,臺灣臺北,2013。
[5] 呂昆龍、張國樑、黃立仁、紀坤明、張雍昌、楊智仁,「車用電子系統的功能安全需求-ISO 26262國際安全規範簡介及其應用」,電腦與通訊,第163期,第10-16頁,2015。
[4] 張雍昌、黃立仁、劉興庄、楊智仁,「具錯誤回復能力之低成本車用處理器架構」,電腦與通訊,第152期,第128-133頁,2013。
[3] IEA, Global EV Outlook 2016-Beyond One Million Electric Cars, International Energy Agency, 2016.

延伸閱讀