透過您的圖書館登入
IP:3.138.200.66
  • 學位論文

鐵金屬亞乙烯基與異氰基化合物的合成及相關反應

Synthesis and Related Reactions of Iron Vinylidene and Isocyanide Complexes

指導教授 : 林英智

摘要


鐵金屬陽離子亞乙烯基化合物的Cγ上含拉電子的官能基,視其官能基的種類,可以行分子內脫氫環化反應,生成環丙烯基錯和物,含金屬雙環錯和物,呋喃錯合物。這些環丙烯基化合物與TMSN3作用後,可生成四唑基化合物,腈基化合物。 此種反應過程需先形成亞乙烯基化合物,之後的疊氮陰離子與亞乙烯基化合物經由一連串的電子轉移及矽烷基加成水解作用,而得到上述的反應結果。 五甲基茂基的鐵金屬環丙烯化合物與TMSN3反應,則只得到鐵金屬亞乙烯基化合物。 環丙烯基化合物與TCNQ反應,可生成兩性的亞乙烯基化合物,此類的兩性化合物在含有具有親核能力的烷氧基存在下,可被脫氫環化形成具有烷氧基的環丙烯化合物。 雙金屬的環丙烯化合物可由其前驅物亞乙烯基化合物脫氫環化而成。 鐵金屬噁唑啉化合物可經由陽離子異氰基化合物在含有酮類或醛類的試劑下進行分子內脫氫與羥基環化加成而得。在不含酮類或醛類的反應條件下,可以行分子內脫氫環化反應,生成氮代環丙烯基錯和物。 釕金屬亞丙二烯基化合物與格林納試劑進行選擇性的親核性加成反應在亞丙烯基的Cγ上,可形成中性釕金屬乙炔基錯合物。 Cγ上含有丙烯基的乙炔基錯合物的氫化反應,可先得到亞乙烯基化合物,但此化合物會行分子內的[2 + 2]環化反應,並經由開環形成不同的亞乙烯基化合物。在Cγ上含有2-甲基-丙烯基的釕金屬亞乙烯基化合物會經由環化反應形成含有丙二烯基的六員環,並以π配位鍵結在釕金屬的陽離子錯合物。

關鍵字

鐵金屬 亞乙烯基 異氰基 環丙烯

並列摘要


Reaction of (η5-C5R5)(dppe)FeCl (1, R = H; 2, R = Me) with phenylacetylene affords neutral iron acetylide complexes (η5-C5R5)(dppe)Fe–C≡CPh (3, R = H; 6, R = Me). Similarly, utilizing the same methodology, complex Cp(dppe)Fe-C≡C-C6H4-C ≡ C-H (5) is prepared from the reaction of 1-ethynyl-4-[2-(triisopropylsilyl)ethynyl]benzene with complex 1 to give complex Cp(dppe)Fe-C≡C-C6H4-C≡C-TIPS (4) first. Hydrolysis of triisopropyl group of complex 4 affords the complex 5. Reaction of various alkyl halides with acetylide complexes 3 and 6 affords a number of cationic vinylidene complexes [(η5-C5R5)(dppe)Fe=C=C(Ph)CH2R1]+ (7a, R = H, R1 = CN; 7b, R = H, R1 = p-C6H4CN; 7c, R = H, R1 = CH=CH2; 7d, R = H, R1 = Ph; 7e, R = H, R1 = p-C6H4CF3; 7f, R = H, R1 = C6F5; 7g, R = H, R1 = CO2Me; 9a, R = Me, R1 = CN; 9b, R = Me, R1 = p-C6H4CN). Similarly, complexes [(Cp)(dppe)Fe=C=C(C6H4C2H)CH2R]+ (8a, R = CN; 8b, R = p-C6H4CN) was also prepared by the same synthetic strategy. Iron cyclopropenyl complexes [Fe]C=C(Ph)CHR ([Fe] = (Cp or Cp*)(dppe)Fe, 10a, R = CN; 10b, R = p-C6H4CN; 10c, R = p-C6H4CF3; 12a, R = CN; 12b, R2 = p-C6H4CN) are prepared by deprotonation of corresponding vinylidene complexes. Similarly, cyclopropenyl complexes (Cp)(dppe)FeC=C(C6H4C2H)CHR (11a, R = CN; 11b, R = p-C6H4CN) were also prepared by the same methodology. For the vinylidene complexes 7c (R = CH=CH2), 7d (R = Ph) and 7f (R = C6F5), the deprotonation reaction leads to formation of the 1-ferra-2,5-diphosphabicyclo[2.1.1]hexane complexes (13a, R = CH=CH2; 13b, R = Ph; 13c, R = C6F5). Deprotonation of vinylidene complex 7g (R = CO2Me) containing an ester group at Cγ affords the neutral furyl complex Cp(dppe)FeC=C(Ph)CH=C(O)OMe (14). Dinuclear iron cyclopropenyl complex {[Fe]C=C(CHCN)}2C6H4 (22) ([Fe] = Cp(dppe)Fe) is prepared by deprotonation of corresponding vinylidene complex {[Fe]C=C(CH2CN)}2C6H4 2+ (21). The reaction of TMSN3 with 10a and 10b gives the tetrazolate complexes Cp(dppe)FeN4CCH(R)CH2CN (15a, R = Ph; 15b, R = C6H4C2H). Treament of 10b which containing p-cyanophenyl group with TMSN3 affords nitrile complex [Cp(dppe)FeN≡CCH(Ph)CH2(p-C6H4CN)]N3 (16). In addition, reaction of Cp* analogous 12a with TMSN3 afforded vinylidene complex 17 which resulted from hydrolysis the TMS group added to Cγ. Electrophilic addition of TCNQ to 10a and 12a yields the zwitterionic vinylidene complexes (η5-C5R5)(dppe)Fe=C=C(Ph)CH(CN)(TCNQ) (18a, R =H; 18b, R =Me) which in the presence of nBu4NOH/MeOH gives the methoxy substituted cyclopropenyl complexes (η5-C5R5)(dppe)FeC=C(Ph)C(OMe)CN (19a, R =H; 19b, R =Me). A number of cationic iron isocyanides complexes [Cp(dppe)Fe−C≡NCH2R]+ (24a, R = Ph; 24b, R = CN; 24c, R = p-C6H4CN; 24d, R = p-C6H4CF3; 24e, R = C6F5; 24f, R = CH=CH2; 24g, R = CO2CH3) are prepared by alkylation of iron cyano complex Cp(dppe)Fe-C≡N (23) with corresponding organic halides. Treatment of the cationic isocyanide complexes with base in acetone affords insertion of carbonyl group to forms oxzolinyl complexes Cp(dppe)FeCNCH(R)C(Me)2O (26a, R = Ph; 26b, R = CN; 26c, R = p-C6H4CN; 26d, R = p-C6H4CF3; 26e, R = C6F5; 26f, R = CH=CH2). The thermally unstable three-membered azirinyl complexes Cp(dppe)FeCNCH(R) (25b, R = CN, 25c, R = p-C6H4CN) was observed by NMR spectroscopy in the reaction which in the absence of ketone or aldehyde. Additionally, reaction of isocyanide complexes with base in the presence of different aldehydes also affords iron oxazolinyl complexes Cp(dppe)FeCNCH(R1)C(R2)(R3)O (27a, R1 = R2 = Ph, R3 = H; 27b, R1 = CN, R2 = Ph, R3 =H; 27c, R1 = p-C6H4CN, R2 = Ph, R3 = H; 28a, R1 = Ph, R2 = (CH3)3, R3 = H; 28b, R1 = CN, R2 = (CH3)3, R3 =H). Treatment of [Ru(=C=C=C(Ph)2)(η5-C5H5)(PPh3)2][PF6] (29) with Grignard reagent RCH2MgBr in THF yielded the neutral acetylide complex [Ru]-C≡C-C(Ph)2CH2R ([Ru] = (η5-C5H5)(PPh3)2Ru; 30a, R = CH=CH2; 30b, R = CMe=CH2; 30c, R = C≡CH, 30d, R = CH2CH=CH2; 30e, R = Ph). Complexes 30a - 30e undergo protonation reactions giving the corresponding vinylidene complexes {[Ru]=C=CHCPh2CH2R}+ (31a, R = CH=CH2; 31b, R = CMe=CH2; 31c, R = C≡CH; 31d, R = CH2CH=CH2; 31e, R = Ph). Complex 31a in solution transforms to {[Ru]=C=CHCH2CPh2CH=CH2}+ (32a) via a new metathesis process of the terminal vinyl group with the C=C of the vinylidene group. Complex 31b undergoes a different cyclization process yielding 34b containing a η2-cyclic allene ligand which is fully characterized by single crystal X-ray diffraction analysis. Complex 31c transforms to {[Ru]=C=CHCH2CPh2C≡CH}+ (32c) which possibly proceeds via a π-coordinated alkynyl complex. No metathesis or cyclization process was observed on complexes 31d and 31e.

並列關鍵字

iron vinylidene isocyanide cyclopropene

參考文獻


137. (a) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Modrego, J.; Oñate, E. Organometallics 1997, 16, 5826. (b) Esteruelas, M. A.; Gómez, A. V.; Lahoz, F. J.; López, A. M.; Oñate, E.; Oro, L. A. Organometallics 1996, 15, 3423. (c) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Oñate, E.; Ruiz, N. Organometallics 1998, 17, 2297. (d) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Oñate, E. Organometallics 1998, 17, 3567. (e) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Puerta, M. C.; Valerga, P. Organometallics 1998, 17, 4959. (f) Esteruelas, M. A.; Gómez, A.V.; López, A. M.; Modrego, J.; Oñate, E. Organometallics 1998, 17, 5434. (g) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Oñate, E.; Ruiz, N. Organometallics 1999, 18, 1606. (h) Bernad, D. J.; Esteruelas, M. A.; López, A. M.; Modrego, J.; Puerta, M. C.; Valerga, P. Organometallics 1999, 18, 4995. (i) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Oliván, M.; Oñate, E.; Ruiz, N. Organometallics 2000, 19, 4. (j)Bernad, D. J.; Esteruelas, M. A.; López, A. M.; Oliván, M.; Oñate, E.;Puerta, M. C.; Valerga, P. Organometallics 2000, 19, 4327.
27. (a) Ting, P. C.; Lin, Y. C.; Cheng, M. C.; Wang, Y. Organometallics 1994, 13, 2150. (b) Ting, P. C.; Lin, Y. C.; Lee, G. H.; Cheng, M. C.; Wang, Y. J. Am. Chem. Soc. 1996, 118, 6433.
29. Huang, C. C.; Lin, Y. C.; Liu, Y. H.; Wang, Y. Organometallics 2003, 22, 1512.
96. (a) Chang, K. H.; Lin, Y. C. Chem. Commun. 1998, 1441. (b) Chang, K. H.; Lin, Y. C.; Liu, Y. H.; Wang, Y. J. Chem. Soc., Dalton Trans 2001, 3154.
125. Lo, Y. H.; Hsu, S. C.; Huang, S. L.; Lin, Y. C.; Liu, Y. H.; Wang, Y. Organometallics 2004, 23, 5924.

延伸閱讀