透過您的圖書館登入
IP:44.220.41.140
  • 學位論文

多壁奈米碳管對於聚氨酯塗層之抗蝕及水下吸音特性影響之研究

The Study of MWCNTs with Polyurethane Coating for Anti-corrosion and Underwater Acoustic Absorbing Effect

指導教授 : 李岳聯
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究為探討適合塗布於潛艦外殼之抗蝕及吸音塗層,乃採以聚氨酯(Polyurethane, PU)塗料搭配不同重量百分比(wt%)之多壁奈米碳管(Multiwall Carbon nanotubes, MWCNTs)來評估各塗層之抗蝕與吸音能力,以評估在不同含量之奈米碳管情況下對各塗層之抗蝕及吸音效果的影響。根據文獻顯示,PU塗層除有良好抗蝕性外,同時也具有與水相匹配之聲阻抗特性,因此本研究中,選用PU當作抗蝕及吸音塗層之基材。在實驗中主要可分為塗層抗蝕、附著、物理與吸音之四項主要測驗。在抗蝕測驗中,將各塗層浸泡於3.5 wt%氯化鈉(NaCl)溶液,並藉由交流阻抗法與動電位極化法檢測不同奈米碳管含量對於塗層之長時間之抗蝕能力表現,另外還以業界常用之鹽霧試驗來加速各塗層之腐蝕,以此判斷各塗層之腐蝕型態的變化,為判斷塗層與底材之附著優劣程度對於抗蝕表現,乃採以百格試驗與拉拔試驗進行檢測,緊接著再以光學顯微鏡及場發射掃瞄式電子顯微鏡觀察不同奈米碳管含量對於PU塗層之表面形貌影響,同時本文為了解具有高物理特性之奈米碳管對於PU塗料之材料性質影響,分別再以動態機械分析與拉伸試驗進行實驗驗證,而各塗層於水下吸音能力之優劣,乃將各塗層放置於充水式阻抗管當中,並以2,000-6,000 Hz之頻率為各塗層進行水下吸音檢測,然而為實際驗證各塗層之吸音效果,本文最終輔以COMSOL軟體進行吸音實驗之佐證。實驗結果證實,添加0.4 wt%奈米碳管於PU塗層可明顯改善塗層於長時間下之抗蝕能力,而當PU塗層添加1 wt%奈米碳管後,其附著性、阻尼性質與機械強度皆顯示出最佳特性,而在水下吸音方面,更是近乎減少純PU之20%的聲波反射,而COMSOL模擬更是判斷出與實驗同樣之趨勢。

關鍵字

聚氨酯 奈米碳管 抗蝕 水下吸音 模擬

並列摘要


To study the anti-corrosion and sound-absorbing coating for submarine shell, the Polyurethane(PU) coating with different contents of multiwalled carbon nanotubes (MWCNTs) were used to evaluate the effect in anti-corrosion and sound-absorbing. The previous literatures showed that the PU coating not only can against corrode but also absorb acoustic. Therefore, PU was chosen for the coating of anti-corrosion and sound-absorbing in this study. There are four major experiments which were anti-corrosion test, adhesion test, physical test and underwater acoustic absorption test to evaluate the influence by addition of different contents of MWCNT of PU coating. First one was corrosion test. The electrochemistry impendence spectroscopy(EIS), potentiodynamic were used to measure the anti-corrosion properties of composite coatings which were immersed in 3.5 wt% NaCl solution. Salt spray test was utilized to qualified the composite coatings corrosion resistance. The tape test and pull-off test were used to determine the adhesion strength between the coatings and the substrate. The surface morphology of composite coatings was observed by optical microscopy and field emission scanning electron microscopy. The dynamic mechanical analysis and tensile tests were carried out to characterize the material properties of PU. The underwater acoustic test was conducting by putting coatings into impedance tube with the frequency range of 2,000-6,000 Hz to measured underwater reflection coefficient. COMSOL simulation was conducting to verify the underwater sound-absorbing experiment. The results suggested the PU coating with 0.4 wt% MWCNT significantly improved the corrosion resistance over the long period of time. And, the PU coating with 1 wt% MWCNT showed the best properties in the adhesion, damping and mechanical strength. In the underwater acoustic absorption test, the PU coating with 1 wt% MWCNT reduced 20% of the reflection coefficient of PU coating, and the simulation also shows the same trend as the experiment.

參考文獻


[95] 邱大維, 水下阻抗管之設計與吸音材量測, 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-67, 2003.
[24] 李忠縈, 離岸風機防蝕塗層性質監測技術之開發及應用, 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-108, 2016.
[96] 簡志宇, 以注水彈性阻抗管測量材料之水中聲學特性之研究, 臺灣大學工程科學及海洋工程學研究所學位論文, pp 1-102, 2005.
[47] 蔡宗志, 雙胺鏈延長劑長度對陰離子水性 PU 的影響, 中央大學化學工程與材料工程學系, pp. 1-72, 2011.
[46] 黃建霖, 經互穿網狀 (IPN) 途徑對聚醯亞胺與環氧樹脂二高分子材料低介電化, 成功大學化學工程學系學位論文, pp. 1-164, 2003.

延伸閱讀