透過您的圖書館登入
IP:18.118.210.213
  • 學位論文

新型有機染料的設計、合成與太陽能元件的應用

Design and Synthesis of Novel Organic Dyes and Devices Application

指導教授 : 汪根欉

摘要


我們利用染料直立吸附於 TiO2 的特性,對染料TPCA 進行結構修飾產生具有熱聚合能力的VTPCA。藉由控制染料的排列密度,引發合聚後的染料足以防止電解質過度擴散,降低電解質的干擾,達到抑制載子復合的目的。結構未修飾的TPCA 元件僅得到4.04 %的效率,熱聚合染料VTPCA 將效率提升至5.74 %,增幅達42.1 %。 除此之外,針對TiO2 表面的活性中心距離為10Å,我們也設計了一系列具有不同結構特色的雙錨基染料,其兩錨基距離為10Å 或其整數倍,如:dTPCA、ICZDTA、BPDTA 等等。此類型染料擁有強烈的吸附力及高消光係數,對於元件的長效性與效能皆能有正面的幫助。

關鍵字

染料 太陽能電池 熱聚 雙錨基

並列摘要


A simple method uses to reduce the electron recombination in dye-sensitized solar cells (DSSCs) is demonstrated. The new dye molecule VTPCA equipped with thermal cross-linkable styryl group can undergo polymerization during the annealing step of device fabrication to generate an electrolyte-blocking shell, which can impede the undesirable electron recombination with the electrolyte. The Jsc, Voc, FF of the solar cell sensitized with VTPCA are 9.83 mA cm-2, 0.74 V, and 0.73, respectively, yielding an overall conversion efficiency of 5.31 %. The result acquires 31.4 % improvement on device efficiency comparing to the unmodified device. In addition, with the incorporation of co-adsorbent chenodeoxycholic acid (CDCA) and cross-linkable repair additive 4,4’-divinyltriphenylamine (DVTP), the optimized device with a robust shell shows an overall 42.1 % enhancement over the basic model device. In addition, we have designed another series of di-anchoring dyes based on the distance of TiO2 surface active site (ie: 10 or 20 Å), such as DTPCA, ICZDTA and BPDTA. These dyes have both highly binding affinity and extinction coefficient, which are two required components to develop high efficiency DSSCs.

並列關鍵字

DSSC dye solar cell thermal crosslinking di-anchor

參考文獻


25. Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P. Chem. Mater. 2010, 22, 1915.
4. (a) Tan, S.; Zhai, J.; Fang, H.; Jiu, T.; Ge, J.; Li, Y.; Jiang, L.; Zhu, D. Chem. Eur. J. 2005, 11, 6272; (b) Won, Y. S.; Yang, Y. S.; Kim, J. H.; Ryu, J.-H.; Kim, K. K.; Park, S. S. Energy Fuels 2010, 24, 3676.
17. (a) Yang, H. B.; Guai, G. H.; Guo, C. X.; Song, Q. L.; Jiang, S. P.; Wang, Y. L.; Zhang, W.; Li, C. M. J. Phys. Chem. C 2011, 115, 12209; (b) Chou, C. S.; Hsiung, C. M.; Wang, C. P.; Yang, R. Y.; Guo, M. G. Int. J. Photoenergy 2010; (c) Gibson, E. A.; Smeigh, A. L.; Le Pleux, L.; Fortage, J.; Boschloo, G.; Blart, E.; Pellegrin, Y.; Odobel, F.; Hagfeldt, A.; Hammarstrom, L. Angew. Chem. Int. Ed. 2009, 48, 4402; (d) Bandara, J.; Weerasinghe, H. Sol. Energy Mater. Sol. Cells 2005, 85, 385; (e) He, J. J.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S. E. J. Phys. Chem. B 1999, 103, 8940.
20. Chou, C. C.; Wu, K. L.; Chi, Y.; Hu, W. P.; Yu, S. J.; Lee, G. H.; Lin, C. L.; Chou, P. T. Angew. Chem. Int. Ed. 2011, 50, 2054.
13. (a) Halvorson, C.; Hays, A.; Kraabel, B.; Wu, R. L.; Wudl, F.; Heeger, A. J. Science 1995, 267, 1892; (b) Yoon, C. O.; Reghu, M.; Moses, D.; Cao, Y.; Heeger, A. J. Synth. Met. 1995, 69, 255.

被引用紀錄


羅鈞元(2014)。應用於染料敏化太陽能電池之新穎雙錨基材料的設計與合成〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.00299

延伸閱讀