透過您的圖書館登入
IP:18.191.228.88
  • 學位論文

具有ESIPT與ESDPT性質化合物之合成與研究

Synthesis and Study of ESIPT And ESDPT Compound

指導教授 : 周必泰

摘要


第一部分關於具有雙路徑激發態質子轉移的 3-hydroxyflavone 衍生物, 3-hydroxy-2-(pyridin-2-yl)-4H-chromen-4-one, 在其質子轉移機制上所做的研究。雙路徑質子轉移在 3-hydroxyflavone 衍生物中,此分子為首例,透過分子的設計,質子轉移的路徑可以發生在 hydroxyl group 和 pyridinic group 之間或是 hydroxyl group 和 carbonyl group 之間。固態時,由 X-ray 的分析結果可知,僅前者會發生,而在溶液態時,兩個路徑皆可進行,但前者因 pyridinic group 會旋轉而不放光。透過酸鹼控制或保護基的引入﹙於溶液態時﹚,可將 pyridinic group protonate 或 protect 起來,此時質子轉移僅只能發生在 hydroxyl group 和 carbonyl group 之間。雙路徑質子轉移,在經過適當的調控後,可切換回以往的單一路徑,進而在螢光光譜或吸收光譜上呈現出差異。 第二部分則是研究激發態質子轉移的反應,其中包括了溶液態的分子間與分子內的質子轉移現象,再研究雙質子轉移的反應我們設計了一個6HIQ與7-azaindole (7AI)分子有非常類似的質子提供與接受團,因此彼此可以互相形成非對稱性的二聚體結構,但6HIQ的可見紫外光吸收比7AI還要再更紅位移100nm左後,因此我們可以選擇性的激發6HIQ分子產生非對稱性的雙質子轉移,來光察到雙質子轉移過程中所存在的中間體,此項發現可以有力的證明在非對稱的雙質子轉移系統,其轉移反應是兩個質子以兩個步驟(two-step)進行的

並列摘要


The dual function of the excited-state intramolecular proton transfer (ESIPT) in the newly synthesized 3-hydroxy-2-(pyridin-2-yl)-4H-chromen-4-one has been recognized. One of the two ESIPT routes typically happens between the hydroxyl group and the carbonyl group in a five-membered ring configuration. The other occurs between the hydroxyl group and the pyridinic group in a six-membered ring configuration. The switchable ESIPT implies the potential applications of the pH fluorescent indicator and the anion chemosensor. The dual function in the 3-hydroxyflavone derivative is believed to further spark large interests for the utilization of the ESIPT in a more practical way. On the other hand, the ESPT dyanmcis via intermolecular hydrogen bonding has also been reviewed. Particually, a four 6HIQ is strategically designed and synthesized; it possesses a central moiety of 7-azaindole (7AI) and undergoes excited-state double proton transfer (ESDPT). Despite a barrierless type of ESDPT in the 6HIQ dimer, femtosecond dynamics and a kinetic isotope effect provide indications for a stepwise ESDPT process in the 6HIQ/7AI heterodimer.

參考文獻


(14) (a) Chou, P. T.; Chen, Y. C.; Yu, W. S.; Chou, Y. H.; Wei, C. Y.; Cheng, Y. M. J. Phys. Chem. A 2001, 105, 1731. (b) Chou, P. T.; Yu, W. S.; Cheng, Y. M.; Pu, S. C.; Yu, Y. C.; Lin, Y. C.; Huang, C. H.; Chen, C. T. J. Phys. Chem. A 2004, 108, 6487.
(3) Chou, P.-T.; Pu, S.-C.; Cheng, Y.-M.; Yu, W.-S.; Yu, Y.-C.; Hung, F.-T; Hu, W.-P. J. Phys. Chem. A 2005, 109, 3777.
(23) (a) Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Science 2003, 300, 1434. (b) Koler, R. H.; Cao, J.; Zipfel, W. R.; Webb, W. W.; Hanson, M. R. Science 1997, 276, 2039. (c) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73. (d) He, G. S.; Markowicz, P. P.;Line, P.-C.; Prasad, P. N. Nature 1999, 415, 767. (e) Helmchen, F.; Denk, W. Nat. Methods 2005, 2, 932.
(7) Roshal, A. D.; Organero, J. A.; Douhal, A. Chem. Phys. Lett. 2003, 379, 53.
(8) Hsieh, C.-C.; Jiang, C.-M.; Chou, P.-T. Acc. Chem. Res. 2010, DOI: 10.1021/ar1000499.

延伸閱讀