DOI
stands for Digital Object Identifier
(
D
igital
O
bject
I
dentifier
)
,
and is the unique identifier for objects on the internet. It can be used to create persistent link and to cite articles.
Using DOI as a persistent link
To create a persistent link, add「http://dx.doi.org/」
「
http://dx.doi.org/
」
before a DOI.
For instance, if the DOI of an article is
10.5297/ser.1201.002
, you can link persistently to the article by entering the following link in your browser:
http://dx.doi.org/
10.5297/ser.1201.002
。
The DOI link will always direct you to the most updated article page no matter how the publisher changes the document's position, avoiding errors when engaging in important research.
Cite a document with DOI
When citing references, you should also cite the DOI if the article has one. If your citation guideline does not include DOIs, you may cite the DOI link.
DOIs allow accurate citations, improve academic contents connections, and allow users to gain better experience across different platforms. Currently, there are more than 70 million DOIs registered for academic contents. If you want to understand more about DOI, please visit airiti DOI Registration ( doi.airiti.com ) 。
Deep-learning method assisted crane for sway prediction: Recurrent Kalman Network
莊昭陽 , Masters Advisor:康仕仲
繁體中文
DOI:
10.6342/NTU202002034
深度學習 ; 機器學習 ; 人工智慧 ; 時序預測 ; 電腦視覺 ; 吊物系統 ; deep learning ; machine learning ; artificial intelligence ; time series prediction ; computer vision ; payload system


- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... Ghemawat, S. (2016). TensorFlow: large-scale machine learning on heterogeneous systems. Retrieved from https://www.tensorflow.org/
- Abderrahim, M., Gimenez, A., Nombela, A., Garrido, S., Diez, R., Padrón, V. M., Balaguer, C. (2001). The design and development of an automatic construction crane. In Proceedings of 18th International Symposium on Automation and Robotics in Construction, pp. 149-154.
- Becker, P., Pandya, H., Gebhardt, G.H., Zhao, C., Taylor, C.J., Neumann, G. (2019). Recurrent Kalman Networks: factorized inference in high-dimensional deep feature spaces. arXiv: 1905.07357.
- Chen, Q., Cheng, W., Gao, L., Fottner, J. (2019). A pure neural network controller for double‐pendulum crane anti‐sway control: based on Lyapunov stability theory. Asian Journal of Control.
- Chollet, F. (2015). Keras. Retrieved from https://keras.io