透過您的圖書館登入
IP:18.209.209.28
  • 學位論文

建立戴奧辛流佈之系統動態學模式及其與空氣污染物之整合減量效益

The Development of System Dynamics Model for Dioxin Flow and the Co-benefits of Air Pollutants Reduction

指導教授 : 曾昭衡

摘要


本研究利用系統動態學軟體STELLA建置戴奧辛在各介質流佈模式,並模擬戴奧辛的過去及未來趨勢。人體戴奧辛的暴露約95%是由攝食進入體內並經由食物鏈蓄積於血液當中,故本研究同時模擬各食物介質中戴奧辛的濃度並估計人體終生每日暴露量及血中戴奧辛濃度,並依此情形評估戴奧辛的危害風險。本研究利用STELLA系統動態學模式及加拿大環境模型研究中心所建立RAIDAR模式,模擬台灣戴奧辛流佈結果,並以實測值與模擬值比較,結果顯示RAIDAR及STELLA模式誤差百分比分別為63.92%及49.78%,顯示STELLA更接近實測值且誤差均低於十倍以內,表示本研究建置之模式具預測可行性。 本研究針對台灣能源部門及工業部門-鋼鐵業進行戴奧辛減量情境假設及政策實施之戴奧辛、溫室氣體及指標污染物整合減量之成本效益分析,結果顯示在能源部門及工業部門-鋼鐵業到達2030政策目標年,每年分別需增加內部成本1,183億元/年及208億元/年;另外在溫室氣體減量效益包括天災農業經濟、天災生命價值損失及氣候變遷之國民醫療健保支出,能源部門及鋼鐵業分別為2,084億元/年及27億元/年;在指標污染物及戴奧辛減量效益分為可避免平均餘命降低天數及可減省醫療效益,能源部門及鋼鐵業分別為2.84(天/人-年)、45億元/年及5.74億元/年、0.85(天/人-年)社會效益。成本效益分析結果,在能源部門及工業部門-鋼鐵業最佳情境益本比分別為6.43及8.07。

並列摘要


This study used system dynamics software STELLA to develop a system dynamics model for dioxin flow, to estimate past and future trend dioxin level in each environment media. More than 95% of human exposure is through food intakes, so we simulated the dioxin level in each kind of foods and estimated the dioxin concentration in body blood, to calculate life time average daily dose (LADD) for human exposure. In addition , we also compared STELLA and RAIDAR model with measurement value and the error percentage between each other was approximately 63.92% and 49.78%., The result show the accuracy for STELLA model is better than RAIDAR model. The scope of this study was estimated the cost and benefits for reducing emissions of Criteria Air Pollutants(CAPs), Green House Gas(GHG) and Dioxin, which were assumed in two scenarios, Taiwan Energy Sector and Iron and Steel Industry. To achieve the policy in 2030, the additional internal costs (capital cost + fuel cost) in two scenarios was estimated to be NT$ 118.3 and 20.8 billion/yr, respectively. Based on two scenarios, the benefit for reducing GHG including agricultural economy, disaster death and medical expenses, were NT$ 208.4 and 2.7 billion/yr, respectively. And the benefit for reducing CAPs and Dioxin level, the Loss of Life Expectancy(LLE) and medical expenses in this two scenarios (Taiwan Energy Sector and Iron and Steel Industry) were 2.82 (day /person-year), 4.50 billion/yr and 0.85 (day /person-year), 0.57 billion/yr, respectively. The result show the cost-benefit analysis that the benefit-cost ratios were estimated to 6.43 and 9.07 in Taiwan energy sector and Iron and Steel Industry scenario, respectively.

參考文獻


[71] 曹心雯,室內外空氣污染總暴露導致之壽命增減與醫療支出-以校區、社區及行政區為例,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2009
[72] 許哲豪,應用系統動態模式STELLA模擬臺灣溫室氣體及空氣污染物整合減量效益,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2009
[54] 施怡瑄,建立汞流佈之系統動態學模式模擬台灣能源部門空氣污染物之整合減量效益,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2011
[74] 施怡瑄,建立汞流佈之系統動態學模式模擬台灣能源部門空氣污染物之整合減量效益,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2011
[73] 林彥光,評估環保車輛污染減量及補貼機制之效益-應用環境健康整合效益模型,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2010

被引用紀錄


林軒嘉(2014)。資源回收減量之環境及健康效益評估〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2014.00586
王御安(2014)。空氣資源整合效益模型評估空氣污染減量效益之性別差異〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2014.00585
Kasaon, S. (2013). 肯亞奈洛比丹多拉垃圾場之戴奧辛流佈評估 [master's thesis, National Taipei University of Technology]. Airiti Library. https://doi.org/10.6841%2fNTUT.2013.00226

延伸閱讀