透過您的圖書館登入
IP:3.135.202.224
  • 學位論文

新式切換頻率調變控制技術之同步整流降壓型轉換器的研製

Design and Implementation of Synchronous Rectified Buck Converter with Novel Switching Frequency Modulation Control Technique

指導教授 : 歐勝源
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文提出一種新式切換頻率調變控制技術,適用於主機板上的同步整流降壓型轉換器。此種變頻控制技術乃是當負載變輕時,將切換頻率調高,而負載變重時,則調低切換頻率。藉由此變頻控制技術不需額外增加輔助開關及其他的儲能元件即能實現零電壓切換並進而提升效率。為了避免導通損失過度增加,並使輸出電壓漣波能夠控制在規格內,有鑒於這些切換頻率限制等因素,在本控制方法中設定一負載電流之臨界點,當負載進一步增加時,則基於此臨界電流值而不再降低切換頻率。最後,本論文實際製作一組八相同步整流降壓型轉換器,並與傳統定頻在250kHz之控制技術相比較,藉以驗證所提切換頻率調變控制技術之良好性能。相較於傳統定頻切換技術,於八相同步整流降壓型轉換器加入所提之切換頻率調變控制技術後,其效率最高可改善約9%。

並列摘要


A novel switching frequency modulation control technique of switching frequency for synchronous rectified buck converter used in such as motherboards is proposed in this paper. The switching frequency is modulated higher as loads more lightly and vice versa, so that the proposed scheme is also called variable-frequency control method. Zero voltage switching (ZVS) can be achieved to boost efficiency without additional auxiliary switches and any storage elements while frequency is modulated. To avoid conduction loss increase excessively and cause the output ripple under control and in view of the switching frequency being finite, the switching frequency will be fixed constant when the much more loading is added wherein the load threshold to fix switching frequency constant is found by experiments. Compared to conventional constant switching frequency techniques with 250kHz, experimental results derived from an eight-phase synchronous rectified buck converter show the proposed modulation technique is superior to the conventional one, the efficiency can be increased up to 9% for eight-phase synchronous rectified buck converter under various load conditions.

參考文獻


[1] R. T. Chen, “Single-stage autotransformer-based VRM with input current shaper,” IEEE Trans. Power Electron., vol. 22,pp.2375–2385, Nov. 2007.
[2] X. Zhou, P. Xu and F. C. Lee, “A novel current-sharing control technique for low-voltage high-current voltage regulator module applications,” IEEE Trans. Power Electron., vol. 15, pp.1153–1162, Nov 2000.
[3] C. Collins and M. Duffy, “Distributed (parallel) inductor design for VRM applications,” IEEE Trans. Power Electron., vol. 41, pp.4000–4002, Oct. 2005.
[4] J. Quintero, A. Lazaro, C. Fernandez, M. Sanz and A. Barrado, “Reduction of the switching frequency and the number of phases in multiphase VRM by applying linear — non — linear control,” in Proc. IEEE PESC’06 Conf., 2006, pp.1–6.
[5] A. Simon-Muela, S. Petibon, C. Alonso and J. L. Chaptal,“ Practical implementation of a high-frequency current-sense technique for VRM,” IEEE Trans. Ind. Electron., vol. 55, pp.3221–3230, Sept. 2008.

被引用紀錄


蕭仲勛(2014)。用於電動載具之鋰釔電池電量估測技術〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00165
王瑞乾(2011)。具有降相最佳化之變頻同步整流 VRM 研製〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00066
許迪翔(2014)。具有變頻與降相控制之交錯式功率因數修正器研製〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2701201415494200

延伸閱讀